
ADV  MATH
SCI  JOURNAL

Advances in Mathematics: Scientific Journal 13 (2024), no.1, 85–96
ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.13.1.6
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ABSTRACT. The paper studies the solvability of an inverse boundary value prob-
lem with an unknown time-dependent coefficient for the equation of forced vi-
brations of a cantilever beam with the integral. Bending transverse vibrations of
a homogeneous beam under the action of an external force in the absence of ro-
tational motion during bending are described by a fourth-order differential equa-
tion. The purpose of the work is to determine the unknown coefficient and solve
the problem under consideration. THIS problem under consideration is reduced to
an auxiliary equivalent problem. Next, the existence and uniqueness of a solution
to the equivalent problem is proved using the contraction mapping principle. As
a result, using equivalence, the uniqueness of the existence of the classical solu-
tion is proved. Classification of subjects in mathematics 2010: primary education
35R30, 35L10, 35L70; Secondary 35A01, 35A02, 35A09.

1. INTRODUCTION AND PRELIMINARY NOTES

There are many cases where the needs of the practice leads to problems in
determining the coefficients or the right-hand side of the differential equations
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according to some known data of its solutions. Such problems are called inverse
value problems of mathematical physics. Inverse value problems arise in various
areas of human activity such as seismology, mineral exploration, biology, medicine,
quality control of industrial products, etc., that states them in a number of actual
problems of modern mathematics. The inverse problems are favorably develop-
ing section of up-to-date mathematics. Recently, the inverse problems are widely
applied in various fields of science.

Different inverse problems for various types of partial differential equations
have been studied in many papers. First of all we note the papers of A. N. Tikhonov
[1], M. M. Lavrentyev [2, 3], A. M. Denisov [4], M.I. Ivanchov [5] and their fol-
lowers.

Recently, a special attention has been paid to the study of a fourth-order linear
differential equation describing the bending transverse vibrations of a homoge-
neous beam under the influence of an external force in the absence of rotational
motion during bending [6, 7].

Note that the problems of oscillatory processes of beams, rods and plates play
an important role in structural mechanics [8, p. 326].

In this paper, we proved the existence and uniqueness of the solution of the in-
verse boundary value problem for the equation of forced vibrations of a cantilever
beam with integral conditions

2. PROBLEM STATEMENT AND ITS REDUCTION TO EQUIVALENT PROBLEM

Let T > 0 be some fixed number and denote by DT := {(x, t) : 0 < x < 1, 0 <

t < T}. Consider the one-dimensional inverse problem of identifying an unknown
pair of functions {u(x, t) , a(t)} for the equation of forced vibrations of a cantilever
beam [6,7]

(2.1) utt(x, t) + αuxxxx(x, t) = a(t)u(x, t) + f(x, t)

with the nonlocal initial conditions

u(x, 0) = φ(x) +

∫ T

0

p1(t)u(x, t)dt, ut(x, 0)

= ψ(x) +

∫ T

0

p2(t)u(x, t)dt (0 ≤ x ≤ 1).

(2.2)
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Neumann boundary conditions

(2.3) ux(0, t) = ux(1, t) = uxxx(0, t) = 0 (0 ≤ t ≤ T ),

nonlocal integral condition

(2.4)
∫ 1

0

u(x, t)dx = 0(0 ≤ t ≤ T )

and over determination condition

(2.5) u(0, t) = h(t) (0 ≤ t ≤ T ) ,

where α > 0given number,f(x, t), φ(x), ψ(x), pi(t) (i = 1, 2), and h(t) are given
sufficiently smooth functions of x ∈ [0, 1] and t ∈ [0, T ].

Definition 2.1. The pair {u(x, t) , a(t)} is said to be a classical solution to the prob-
lem (2.1)-(2.5), if the functions u(x, t) ∈ C̃4,2(D̄T ) and a(t) ∈ C[0, T ] satisfies an
(Eq 1) in the region DT , the condition (2.2) on [0, 1], and the statements (2.3)-(2.5)
on the interval [0, T ], where

C̃(4,2)(D̄T ) =
{
u(x, t) : u(x, t) ∈ C2(D̄T ), uxxxx(x, t) ∈ C(D̄T )

}
.

In order to investigate the problem (2.1) - (2.5), first we consider the following
auxiliary problem

(2.6) y′′(t) = a(t)y(t), t ∈ [0, T ],

(2.7) y(0) =

∫ T

0

p1(t)y(t)dt, y
′(0) =

∫ T

0

p2(t)y(t)dt,

where p1(t), p2(t), a(t) ∈ C[0, T ] are given functions, and y = y(t) is desired func-
tion. Moreover, by the solution of the problem (2.6), (2.7), we mean a function
y(t) belonging to C2[0, T ] and satisfying the conditions (2.6), (2.7) in the usual
sense.

Lemma 2.1. Assume that p1(t), p2(t) ∈ C[0, T ], a(t) ∈ C[0, T ], ∥a(t)∥C[0,T ] ≤ R =

const, and the condition(
T ∥p2(t)∥C[0,T ] + ∥p1(t)∥C[0,T ] +

T

2
R

)
T < 1

hold. Then the problem (2.6), (2.7) has a unique trivial solution.
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Now along with the inverse boundary-value problem (2.1) - (2.5), we consider
the following auxiliary inverse boundary-value problem: It is required to deter-
mine a pair {u(x, t), a(t)} of functions u(x, t) ∈ C̃4,2(D̄T ) and a(t) ∈ C[0, T ], from
relations (2.1)-(2.3), and

(2.8) uxxx(1, t) = 0 (0 ≤ t ≤ T ),

(2.9) a (t)h (t) + f (0, t) = h′′ (t) + αuxxxx (0, t) ( 0 ≤ t ≤ T ) .

Using Lemma 2.1, similarly to [8]. we prove the following

Theorem 2.1. Suppose that f(x, t) ∈ C(D̄T ), φ(x), ψ(x) ∈ C[0, 1], pi(t) ∈ C[0, T ]

(i = 1, 2), h(t) ∈ C2[0, T ], h(t) ̸= 0,
∫ 1

0
f(x, t)dx = 0 (0 ≤ t ≤ T ) and the

compatibility conditions

(2.10)
∫ 1

0

φ(x)dx = 0,

∫ 1

0

ψ(x)dx = 0 ,

(2.11) φ(0) +

∫ T

0

p1(t)h(t)dt = h(0), ψ(0) +

∫ T

0

p2(t)h(t)dt = h′(0) ,

holds. Then the following assertions are valid:

(1) each classical solution {u(x, t), a(t)} of the problem (2.1)-(2.5) is a solution
of problem (2.1)-(2.3), (2.10),(2.11), as well;

(2) each solution {u(x, t), a(t)} of the problem (2.1)-(2.3), (2.10), (2.11), if

(2.12)
(
T ∥p2(t)∥C[0,T ] + ∥p1(t)∥C[0,T ] +

T

2
∥a(t)∥C[0,T ]

)
T < 1

is a classical solution of problem (2.1)-(2.5).

3. EXISTENCE AND UNIQUENESS OF THE CLASSICAL SOLUTION

We seek the first component u(x, t) of classical solution {u(x, t) , a(t)} of the
problem (2.1)-(2.3), (2.10), (2.11) in the form

(3.1) u(x, t) =
∞∑
k=0

uk(t) cosλkx (λk = kπ) ,
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where

uk(t) = lk

∫ 1

0

u(x, t) cosλkxdx (k = 0, 1, . . .), lk =

{
1, k = 0,

2, k = 1, 2, . . . .

Then applying the formal scheme of the Fourier method, from (2.1) and (2.2)
we have

(3.2) u′′k(t) + αλ4kuk(t) = Fk(t;u, a) (0 ≤ t ≤ T ; k = 0, 1, . . .),

(3.3) uk(0) = φk+

∫ T

0

p1(t)uk(t)dt, u′k(0) = ψk+

∫ T

0

p2(t)uk(t)dt (k = 0, 1, . . .),

where

Fk(t;u, a) = fk(t) + a(t)uk(t), fk(t) = lk

∫ 1

0

f(x, t) cosλkxdx (k = 0, 1, . . .) , ,

φk = lk

∫ 1

0

φ(x) cosλkxdx, ψk = lk

∫ 1

0

ψ(x) cos λkxdx (k = 0, 1, . . .).

Solving the problem (3.2), (3.3) gives

u0(t) = φ0 +

∫ T

0

p1(t)u0(t)dt+ t

(
ψ0 +

∫ T

0

p2(t)u0(t)dt

)
+

∫ t

0

(t− τ)F0(τ ;u, a)dτ (0 ≤ t ≤ T ) ,

(3.4)

uk(t) =

(
φk +

∫ T

0

p1(t)uk(t)dt

)
cos βkt+

1

βk

(
ψk +

∫ T

0

p2(t)uk(t)dt

)
sin βkt

+
1

βk

∫ t

0

Fk(τ ;u, a) sin βk (t− τ) dτ( k = 1, 2, . . . ; 0 ≤ t ≤ T ),

(3.5)

where
βk = λ2k

√
α.

To determine the first component of the classical solution to the problem (2.1)-
(2.3), (2.10), (2.11) we substitute the expressions uk(t) (k = 0, 1, . . .) into (3.1)
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and, we obtain

u(x, t) = φ0 +

∫ T

0

p1(t)u0(t)dt+ t

(
ψ0 +

∫ T

0

p2(t)u0(t)dt

)
+

∫ t

0

(t− τ)F0(τ ;u, a)dτ +
∞∑
k=1

{(
φk +

∫ T

0

p1(t)uk(t)dt

)
cos βkt

+
1

βk

(
ψk +

∫ T

0

p2(t)uk(t)dt

)
sin βkt

+
1

βk

∫ t

0

Fk(τ ;u, a) sin βk (t− τ) dτ

}
cosλkx .

(3.6)

It follows from (2.11) and (3.1) that

(3.7) a(t) = [h(t)]−1

{
h′′(t)− f(0, t) +

∞∑
k=1

αλ4kuk (t)

}
.

Then from (3.7), taking into account (3.5), we find:

a(t) = [h(t)]−1

{
h′′(t)− f(0, t)+

∞∑
k=1

αλ4k

[(
φk +

∫ T

0

p1(t)uk(t)dt

)
cos βkt

+
1

βk

(
ψk +

∫ T

0

p2(t)uk(t)dt

)
sin βkt

+
1

βk

∫ t

0

Fk(τ ;u, a) sin βk (t− τ) dτ

]}
.

(3.8)

Thus, the solution of problem (2.1) - (2.3), (2.10), (2.11) is reduced to the
solution of system (3.6), (3.8) with respect to unknown functions u(x, t) and a(t).

Lemma 3.1. If {u(x, t), a(t)} is any solution to problem (2.1) - (2.3), (2.10), (2.11),
then the functions

uk(t) = lk

∫ 1

0

u(x, t) cosλkxdx ( k = 0, 1, 2 . . .),

satisfies the system in C[0, T ].

It follows from Lemma 3.1 that

Corollary 3.1. Let system (16), (18) have a unique solution. Then problem (2.1) -
(2.3), (2.10), (2.11) cannot have more than one solution, i.e. if the problem (2.1) -
(2.3), (2.10), (2.11) has a solution, then it is unique.
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With the purpose to study the problem (2.1) - (2.3), (2.10), (2.11), we consider
the following functional spaces.

Denote by B5
2,T [10] a set of all functions of the form

u(x, t) =
∞∑
k=0

uk(t) cosλkx, λk = kπ,

considered in the region DT , where each of the function uk(t) (k = 0, 1, 2, . . .) is
continuous over an interval [0 , T ] and satisfies the following condition:

J(u) ≡ ∥u0(t) ∥C[0 , T ] +

{
∞∑
k=1

(
λ5k ∥uk(t) ∥C[0 , T ]

)2} 1
2

< +∞ .

The norm in this set is defined by

∥u(x, t) ∥B5
2,T

= J(u) .

It is known that B5
2,T is Banach space . Obviously, E5

T = B5
2,T × C[0, T ] with the

norm ∥z(x, t)∥E5
T
= ∥u(x, t)∥B5

2,T
+ ∥a(t)∥C[0,T ] is also Banach space.

Now consider the operator

Φ(u, a) = {Φ1(u, a) , Φ2(u, a) } ,

in the space E3
T , where

Φ1(u, a) = ũ(x, t) ≡
∞∑
k=0

ũk(t) cosλkx ,Φ2(u, a) = ã(t)

and the functions ũ0(t) ,ũk(t), k = 1, 2, . . . , and ã(t) are equal to the right-hand
sides of (3.4), (3.5), and (3.8), respectively.

With the help of simple transformations, we find:

∥ũ0(t)∥C[0,T ] ≤ |φ0|+ T |ψ0|+ T (∥p1(t)∥C[0,T ] + T ∥p2(t)∥C[0,T ]) ∥u0(t)∥C[0,T ]

+ T
√
T

(∫ T

0

|f0(τ)|2 dτ
) 1

2

+ T 2 ∥a(t)∥C[0,T ] ∥u0(t)∥C[0,T ] ,
(3.9)

(
∞∑
k=1

(λ5k ∥ũk(t)∥C[0,T ])
2

) 1
2

≤
√
6

(
∞∑
k=1

(λ5k |φk|)2
) 1

2

+

√
6

α

(
∞∑
k=1

(λ3k |ψk|)2
) 1

2
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+
√
6

(
∥p1(t)∥C[0,T ] +

1√
α
∥p2(t)∥C[0,T ]

)
T

(
∞∑
k=1

(λ5k ∥uk
(t)∥C[0,T ])

2

) 1
2

+

√
6

α
T

(∫ T

0

∞∑
k=1

(λ3k |fk(τ)|)2dτ

) 1
2

+

√
6

α
T ∥a(t)∥C[0,T ]

(
∞∑
k=1

(λ5k ∥uk(t)∥C[0,T ])
2

) 1
2

,

(3.10)

∥ã(t)∥C[0,T ] ≤
∥∥[h(t)]−1

∥∥
C[0,T ]

{∥∥∥∥h′′(t)− f(0, t)

∥∥∥∥
C[0,T ]

+

+

(
∞∑
k=1

λ−2
k

) 1
2

α( ∞∑
k=1

(λ5k |φk|)2
) 1

2

+
√
α

(
∞∑
k=1

(λ3k |ψk|)2
) 1

2

+ T

(
α ∥p1(t)∥C[0,T ] +

√
α ∥p2(t)∥C[0,T ]

)(
∞∑
k=1

(λ5k ∥uk
(t)∥C[0,T ])

2

) 1
2

+
√
αT

(∫ T

0

∞∑
k=1

(λ3k |fk(τ)|)2dτ

) 1
2

+
√
αT ∥a(t)∥C[0,T ]

(
∞∑
k=1

(λ5k ∥uk(t)∥C[0,T ])
2

) 1
2

 .

(3.11)

Suppose that the data for problem (2.1)-(2.3), (2.10), (2.11) satisfy the as-
sumptions:

1. φ(x) ∈ C4[0, 1], φ(2.5)(x) ∈ L2(0, 1) and φ′(0) = φ′(2.1) = φ′′′(0) = φ′′′(2.1) =

0.
2. ψ(x) ∈ C2[0, 1], ψ(2.3)(x) ∈ L2(0, 1) and ψ′(0) = ψ′(1) = 0.
3. f(x, t), fx(x, t), fxx(x, t) ∈ C(D̄T ), fxxx(x, t) ∈ L2(DT ),

fx(0, t) = fx(1, t) = 0 (0 ≤ t ≤ T ).
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4. α > 0, pi(t) ∈ C[0, T ] (i = 1, 2), h(t) ∈ C2[0, T ], h(t) ̸= 0, (0 ≤ t ≤ T ). Then
from (3.9)-(3.11) we get:

∥ũ(x, t)∥B5
2,T

≤ A1(T ) +B1(T ) ∥a(t)∥C[0,T ] ∥u(x, t)∥B5
2,T

+ C1(T ) ∥u(x, t)∥B5
2,T

,
(3.12)

∥ã(t)∥C[0,T ] ≤ A2(T ) +B2(T ) ∥a(t)∥C[0,T ] ∥u(x, t)∥B5
2,T

+ C2(T ) ∥u(x, t)∥B5
2,T

,
(3.13)

where

A1(T ) = ∥φ(x)∥L2(0,1)
+ T ∥ψ(x)∥L2(0,1)

+ T
√
T ∥f(x, t)∥L2(DT ) +

√
6
∥∥φ(5)(x)

∥∥
L2(0,1)

+

√
6

α

∥∥ψ(3)(x)
∥∥
L2(0,1)

+

√
6

α
T ∥fxxx(x, t)∥L2(DT ) ,

B1(T ) =

(
T +

√
6

α

)
T,C1(T ) = T (1 +

√
6) ∥p1(t)∥C[0,T ]

+ T

(
T +

√
6

α

)
∥p2(t)∥C[0,T ] ,

A2(T ) =
∥∥[h(t)]−1

∥∥
C[0,T ]


∥∥∥∥h′′(t)− f(0, t)

∥∥∥∥
C[0,T ]

+

(
∞∑
k=1

λ−2
k

) 1
2

[
α
∥∥φ(5)(x)

∥∥
L2(0,1)

+
√
α
∥∥ψ(3)(x)

∥∥
L2(0,1)

+
√
αT ∥fxxx(x, t)∥L2(DT )

]}
,

B2(T ) =
∥∥[h(t)]−1

∥∥
C[0,T ]

(
∞∑
k=1

λ−2
k

) 1
2 √

αT ,

C2(T ) =
∥∥[h(t)]−1

∥∥
C[0,T ]

(
∞∑
k=1

λ−2
k

) 1
2

T

(
α ∥p1(t)∥C[0,T ] +

√
α ∥p2(t)∥C[0,T ]

)
.

From inequalities (3.12), (3.13) we conclude:

∥ũ(x, t)∥B5
2,T

+ ∥ã(t)∥C[0,T ]

≤ A(T ) +B(T ) ∥a(t)∥C[0,T ] ∥u(x, t)∥B5
2,T

+ C(T ) ∥u(x, t)∥B5
2,T

(3.14)

where

A(T ) = A1(T ) + A2(T ) , B(T ) = B1(T ) +B2(T ) , C(T ) = C1(T ) + C2(T ) .
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Thus, we can prove the following theorem

Theorem 3.1. Assume that statements 1)-4) and the condition

(3.15) (B(T )(A(T ) + 2) + C(T ))(A(T ) + 2) < 1 ,

holds, then problem (2.1)-(2.3), (2.10), (2.11) has a unique solution in the ball
K = KR(∥z∥E5

T
≤ R ≤ A(T ) + 2) of the space E5

T .

Proof. In the space E5
T , consider the operator equation

(3.16) z = Φz ,

where z = {u, a}, and the components Φi(u, a) (i = 1, 2) , of operator Φ(u, a)

defined by the right sides of (3.6) and (3.8).
Consider the operator Φ(u, a)in the ball K = KR out of E5

T .Similarly to (3.14),
we obtain that for any of the estimates are valid:

∥Φz∥E5
T

≤ A(T ) +B(T ) ∥a(t)∥C[0,T ] ∥u(x, t)∥B5
2,T

+ C(T ) ∥u(x, t)∥B5
2,T

≤ A(T ) +B(T )R2 + C(T )R

= A(T ) + (B(T )(A(T ) + 2) + C(T ))(A(T ) + 2) ,

(3.17)

∥Φz1 − Φz2∥E5
T
≤ B(T )R(∥u1(x, t)− u2(x, t)∥B5

2,T
+ ∥a1(t)− a2(t)∥C[0,T ]

+ C(T ) ∥u1(x, t)− u2(x, t)∥B5
2,T

,
(3.18)

Then it follows from (3.15), (3.17), and (3.18) that the operator Φ acts in
the ball K = KR, and satisfy the conditions of the contraction mapping princi-
ple. Therefore the operator Φ has a unique fixed point {z} = {u , a} in the ball
K = KR, which is a solution of equation (3.16); i.e. the pair {u, a} is the unique
solution of the systems (3.6) and (3.8) in K = KR.

Hence the function u(x, t) as an element of space B5
2,T is continuous and has

continuous derivatives ux(x, t), uxx(x, t), uxxx(x, t) and uxxxx(x, t) in DT .
Similarly [9], one can prove that ut(x, t), utt(x, t) are continuous in DT .
It is easy to verify that Eq. (2.1) and conditions (2.2), (2.3), (2.10), (2.11)

satisfy in the usual sense. So, {u(x, t), a(t)} is a solution of (2.1)-(2.3), (2.10),
(2.11), and by Lemma 2 it is unique in the ballK = KR. The proof is complete. □
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Finally, from Theorem 2.1 and Theorem 3.1, implies the unique solvability of
the original problem (2.1) - (2.5).

Theorem 3.2. Suppose that all assumptions of Theorem 3.1, and the conditions∫ 1

0

f(x, t)dx = 0 , (0 ≤ t ≤ T ),

∫ 1

0

φ(x)dx = 0,

∫ 1

0

ψ(x)dx = 0 ,

φ(0) +

∫ T

0

p1(t)h(t)dt = h(0), ψ(0) +

∫ T

0

p2(t)h(t)dt = h′(0) .

holds. Then problem (2.1) - (2.5) has a unique classical solution in the ball K =

KR(∥z∥E5
T
≤ A(T ) + 2) of the space E5

T .

4. CONCLUSION

The existence and uniqueness of the solution of one inverse boundary value
problem for the equation of forced vibrations of a cantilever beam with integral
conditions. First, the original problem is reduced to an equivalent problem, for
which the theorem of existence and uniqueness of the solution is proved. Using
these facts, the existence and uniqueness of the classical solution of one inverse
boundary value problem for the equation of forced vibrations of a cantilever beam
with integral conditions is proved.
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