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ABSTRACT. In this paper, a new method for solving nonlinear Klein-Gordon and
Korteweg-de-Vries (KdV) partial differential equations based on the combination
of the Sawi Transform (ST) and the Homotopy Analysis Method (HAM) was pro-
posed. It was shown that Sawi transform can transform nonlinear patial differen-
tial equations into an algebraic form which can then be solved using HAM. Three
examples were considered to demostrate the effectiveness and efficiency of the
proposed method. The results indicated that the proposed method is a promising
approach for solving nonlinear partial differential equations.

1. INTRODUCTION

Integral transforms are one of the most easy and effective methods for solving
problems arising in mathematical physics, applied mathematics, engineering and
sciences, signal processing [8]. They are mathematics operations that connect
functions or mathematical objects in one domain to another domain through the
use of integration, these transforms simplify the analysis of mathematical models
and systems and are of the following advantages such as simplification and com-
pact representation of function, frequency analysis of function by decomposing
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the function in frequency components. They as well convert differential equations
into algebraic equations thereby making them easier to solve [2, 6, 9,13, 14, 27,
28]. They are mostly used mathematical techniques to determine the answers of
advance problems of space, science, technology and engineering. Several integral
transforms such as Laplace [16, 29], Elzaki [2], Aboodh [27], Sumudu, Mohand
[31], Sawi [9, 13, 14, 23] have been used extensively to find analytical solution of
linear problems of differential equations be it classical (ordinary differential equa-
tion, partial differential equation,integral equations )and fractional order differ-
ential equations. These integral transforms were combined with other numerical
methods such as homotopy pertubation method [32], homotopy analysis method
[16, 18, 29], variational iteration method [7], adomian decomposition method
[13,] to find approximate solution of integro-differential equation, ordinary differ-
ential equation, partial differential equations of classical type as well as fractional
order differential equation [1, 3, 8, 10, 12, 16, 18, 19, 22]. Klein-Gordon equation
has important applications in plasma physics together with Zakharov equations de-
scribing the interaction of Langmuir wave also known as a plasma oscillation and
the ion acoustic wave in plasma, It is a relativistic wave equation that describes
the behaviour of scalar particles with spin zero. This equation was proposed by
Oskar Klein and Walter Gordon in 1926 as an attempt to incorporate relativistic
effects into the Schrödinger equation,it also describes the propagation of particles
with mass and satisfies relativistic invariance [7, 8, 17], it as well explains several
phenomena in the quantum realm that is the structure of atoms and molecules, Its
drawbacks is that it allows for negative probabilities which lead to difficulties in
interpreting it as a probability equation [17, 25, 33, 34]. Klein-Gordon equation
provides a simple but rich model to describe a self-interacting scalar field.

2. CONCEPT OF HOMOTOPY ANALYSIS METHODS

The basic idea of HAM is explained in this section by considering the differential
equation [18, 19, 21]:

N [u(x, t)] = 0, (x, t) ∈ Ω,(2.1)
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where N is the operator both linear and nonlinear, x and t are the independent
variables, u is the unknown function in the domain Ω. Next,

H(ϕ, s) ≡ (1− s)[L(ϕ(x; s))− u0(x)]− shN(ϕ(x; s)).(2.2)

The homotopy operator H is defined as in [12], where s ∈ [0, 1] is an embedding
parameter and h ̸= 0 is the convergence control parameter , u0 is an initial guess
of the solution of Eq. (2.1), ϕ is an unknown function and L is the auxiliary linear
operator satisfying the feature L(0) = 0 when H(ϕ, s) is consider to be zero [12,
19]. Therefore,

(1− s)[L(ϕ(x; t; s))− u0(x, t)] = shN(ϕ(x; t; s)),(2.3)

which is known as the zeroth-order deformation equation. From Eqn. (2.3), it can
be observed that if s = 0,

L(ϕ(x, t; 0))− u0(x, t) = 0,(2.4)

which gives ϕ(x; 0) = u0(x, t). Conversely, if s = 1, Eqn. (2.3) reduces to
N(ϕ(x, t; s)) = 0, and this gives ϕ(x, t; 1) = u(x). Thus, by replacing s from 0
to 1, the result changes from u0 to u.

Using Maclaurin Series, the function ϕ(x, t; s) with parameter s may be written
as [12]

ϕ(x, t; s) = ϕ(x, t; 0) +
∞∑
k=1

1

k!

∂kϕ(x, t; s)

∂sk

∣∣∣∣
s=0

,(2.5)

representing

yk(x, t) =
1

k!

∂k(x, t; s)

∂sk

∣∣∣∣
s=0

k = 1, 2, 3.(2.6)

Then Eqn. (2.5) changes to

ϕ(x, t; s) = u0(x, t) +
∞∑
k=1

uk(x, t)s
k.(2.7)

If the series in eqn. (2.6) converged for s = 1, then the solution of Eqn. (2.1) is
given as [12]

u(x, t) =
∞∑
k=0

uk(x, t).(2.8)
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To find the function uk, Eqn. (2.3) is differentiated, k times with respect to s and
the result is divided by k! where s = 0 [12] through this kth-order deformation
equation for k > 0 is defined as

L(yk(x, t)− x− kyk−1(x, t)) = hH(x, t)ϕk(yk−1(x, t)),(2.9)

where H(x, t) is the auxiliary function.

3. DEFINITION OF SAWI TRANSFORM

Sawi transform of the function f(t) for all t ≥ 0 is defined as:

S(f(t)) =
1

w2

∫ ∞

0

f(t)e−( t
w
)dt = f(w), w > 0,(3.1)

where S stands for Sawi transform operator , w stands for complex frequency do-
main parameter and t = R ≥ 0 [14]

Xn =

0, n ≤ 1

1, n > 1

and

ϕk(yk−1(x, t)) =
1

(k − 1)!

(
∂k−1

∂pk−1
N

( ∞∑
j=1

yj(x)p
j

))
.

TABLE 1. Sawi transform of some functions [31]

S/N F (t) S(F (t)) = f(w)
1 1 1

w
2 t 1
3 t2 2!w
4 tk, k ∈ K kwk−1

5 tk, k > −1 Γ(k + 1)wk−1

6 ext 1
w(1−xw)

7 sinxt x
1+x2w2

8 cosxt 1
w(1+x2w2)

9 sinhxt x
1−x2w2

10 coshxt 1
w(1−x2w2)
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3.1. Deformation Based Sawi’s Transform (SHAM). Consider the nonlinear dif-
ferential equation

N(y(x, t)) = f(x, t),(3.2)

where N is the general nonlinear operator including both linear and nonlinear
terms in which the linear term is divided into G + L where L is the highest order
linear operator and G is the remaining of the linear operator,F (y) is the nonlinear
operator and g(x, t) is the source term. Then the equation can be written as

L(y) +R(y) + F (y) = g(x, t).(3.3)

Applying Sawi transform on both sides of eqn.(3.3) gives

S[L(y)] + S[R(y)] + S[F (y)] = S[g(x, t)],(3.4)

where

S[L(y)] =
Y (w)

wn
−

n−1∑
j=0

yj(0)

wn−j+1
.(3.5)

Substituting Eqn.(3.5) into Eqn.(3.4), then

ȳ(x,w)−
n−1∑
j=0

yj(0)

w1−j
+ wnS[L(y)] + wnS[R(y)]− wnS[g(x, t)] = 0.(3.6)

By applying n-th order deformation equation to find ȳ0, ȳ1, . . ., we have

S[ȳn(x,w)]− χnȳn−1(x,w) = hDn−1(N(ϕ(x,w, q))),

and so,

ȳn(x,w)− χnȳn−1(x,w)(3.7)

= hDn−1

(
ϕ̄(x,w; q)−

n−1∑
j=0

yj(0)

w1−j
(3.8)

+ wn(S(L(y)) + S[R(y)])− wnS[ḡ(x, t)]

)
,

where



102 R.A. Oderinu, K.A. Salaudeen, W.A. Tijani, and S.O. Sangoniyi

yn(x,w) = S−1

(
χnȳn−1(x,w)) + h

(
ȳn−1(x,w)(3.9)

− (1− χ̄n−1)

(
n−1∑
j=0

yj(0)

w1−j
− wnS[ḡ(x, t)]

)

+Dn−1

(
wn(S(L(y))) + S(R(y))

)))
,

where yn is the solution of the equation, h is the convergent control parameter, w
is the complex number, t is the real number greater than or equal to zero

χ̄n−1 =

0, n− 1 < 1

1, n− 1 ≥ 1
,

where y0 is evaluated from the simplified expression that emerges from the given
initial condition and the source term.The successful iteration is obtained by taking
the Sawi inverse of equation (15).

3.2. Application 1. Consider the nonlinear Klein-Gordon equation [17]:

(3.10) d2y

dt2
(x, t)− d2y

dx2
(x, t) + y2(x, t) = x2t2,

with the initial conditions

(3.11) y(x, 0) = 0, yt(x, 0) = x.

The exact solution of eqn. (3.9) is given by

(3.12) y(x, t) = xt.

Apply Sawi transform on both sides of Eq. (3.9) subject to the initial conditions in
eqn. (3.10). then,

ȳn(x,w)− x+ w2S
(
y2 − d2y

dx2
)
)
− 2w3x2 = 0.(3.13)

Applying n-th order deformation equation on Eq. (3.12) by subjecting h = −1 and
using homotopy derivative properties, we have
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ȳn(x,w) = χnȳn−1(x,w)−
(
ȳn−1(x,w) + (1− ¯χn−1)

(
− x− 2w3x2

))
(3.14)

+Dn−1

(
w2S

(
y2 − d2y

dx2

))
,(3.15)

where

Dn−1

(
w2S

(
ϕ2(x,w, q)

))
= w2S

( n−1∑
i=0

yiyn−1−i

)
and

S
(
y(x, t)

)
= x+ 2w3x2 + w2S

(d2yn−1

dx2
−

n−1∑
i=0

yiyn−1−i

)
.(3.16)

Thus,

y0(x, t) = S−1
(
x+ 2w3x2

)
= xt+

x2t4

12
.(3.17)

For n ≥ 1, recursive relation is given as

yn(x, t) = S−1
(
w2S

(d2yn−1

dx2
−

n−1∑
i=0

yiyn−1−i

))
.(3.18)

The following iterations were obtained from eqn. (24) as follows,

y0 = xt+
x2t4

12
, y1 =

t6

180
− x4t4

12
− x3t7

252
− x4t10

12960

y2 =
t6

180
− x2t12

71280
− xt9

5670
+

x3t7

252
=

11x4t10

45360
+

37x5x13

7076160
+

x6t16

18662400

y(x, t) =
n−1∑
i=0

yn(x, t) = y0 + y1 + y2 + . . .

y(x, t) = xt+
x4t10

6048
− x2t12

71280
− xt9

5670
+

37x5t13

7076160
+

x6t16

18662400

3.3. Application 2. Consider the nonlinear partial differential equations [10]:

∂v

∂t
+

1

2

∂v2

∂x
− v + v2 = 0,(3.19)

with initial conditions v(x, 0) = e−x.
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Applying Sawi transform derivative property using given initial conditions and
applying nth order deformation as well as homotopy derivative property, then the
recursive relation is given as

vn(x,w) = −S−1

(
1

w
S

(
1

2

∂

∂v

n−1∑
i=0

vivn−1−i − vn−1 +
n−1∑
i=0

vivn−1−i

))
.(3.20)

By varying the values of n from 1 to 5 in eqn. (3.18) then the following iterates
were obtained

v0 = e−x, v1 = te−x, v2 =
t2

2
e−x

v3 =
t3

6
e−x, v4 =

t4

24
e−x, v5 =

t5

120
e−x.

The solution of Eqn. (3.17) is given as

y(x, t) =
n−1∑
i=0

yn(x, t) = y0 + y1 + y2 + . . .

y(x, t) = e−x

(
1 + t+

t2

2
+

t3

6
+

t4

24
+

t5

120

)
(3.21)

The closed form solution of (3.19) is given as:

y(x, t) = et−x.(3.22)

3.4. Application 3. Consider the nonlinear KDV equation [3]:

(3.23) ∂y

∂t
− 6y

∂y

∂x
+

∂3y

∂x3
= 0,

with the initial conditions

(3.24) y(x, 0) =
x

6
.

The exact solution of Eqn. (3.21) is given by

(3.25) y(x, t) =
x

6(1− t)
.

Applying Sawi transform on both sides of Eqn. (3.21) subject to the initial condi-
tion (3.22) gives,
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ȳn(x,w)−
x

6w
− w

[
S
(
− d3y

dx3
+ 6y

dy

dx

)]
= 0.(3.26)

Simplifying Eqn. (3.24) using n-th-order deformation equation, leads to

ȳn(x,w)− χnȳn−1(x,w) = hDn−1(N(ϕ̄(x,w, q)))

= hDn−1

(
(ϕ̄(x,w, q))− x

6w
+ wS

(∂3y

∂x3
− 6y

∂y

∂x

))
(3.27)

Applying Homotopy derivatives property on Eqn. (3.25) with h = −1 gives

ȳn(x,w) = −(1− χn)ȳn−1(x,w) + (1− χ̄n−1)
( x

6w

)
+
(
wS
(
6

n−1∑
i=0

yi
∂yn−1−i

∂x
− ∂3yn−1

∂x3

))
.(3.28)

The initial approximation y0 is obtaned from Eqn.(35) having taken inverse Sawi
transform thus:

y0(x, t) = S−1
( x

6w

)
=

x

6
.(3.29)

The recursive relation for the solution of Eqn.(30) is given as

yn(x, t) = S−1
(
wS
(
6

n−1∑
i=0

yi
∂yn−1−i

∂x

)
− ∂3yn−1

∂x3

)
.(3.30)

For n ≥ 1 in Eqn. (3.28), the following iterations were obtained thus:

y0(x, t) =
x

6
, y1(x, t) =

xt

6
, y2(x, t) =

xt

6

y3(x, t) =
xt3

6
, y4(x, t) =

xt4

6
, y5(x, t) =

xt5

6

The solution of Eqn. (3.21) is obtained as

y(x, t) =
n∑

i=0

yn(x, t)

y(x, t) =
x

6

(
1 + t+ t2 + t3 + t4 + t5

)
.(3.31)
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The closed form solution of Eqn. (3.29) is given as

y(x, t) =
x

6(1− t)
.(3.32)

TABLE 2. Comparison of Solution of SHAM, PITM with Exact and
absolute error for x=1 at different values of t

t SHAM PITM Exact AESHAM AEPITM [17]
0.1 0.1000000000 0.1000000000 0.1000000000 0.0000000000 0.0000000000
0.2 0.1999999998 0.1999999998 0.2000000000 0.0000000002 0.0000000002
0.3 0.2999999915 0.2999999910 0.3000000000 0.0000000085 0.0000000090
0.4 0.3999998900 0.3999998820 0.4000000000 0.0000001100 0.0000001180
0.5 0.4999992114 0.4999991372 0.5000000000 0.0000007886 0.0000008628
0.6 0.5999960883 0.5999956314 0.6000000000 0.0000039117 0.0000043686
0.7 0.6999849554 0.5999828312 0.7000000000 0.0000150446 0.0000171688
0.8 0.7999519818 0.7999439424 0.8000000000 0.0000480182 0.0000560576
0.9 0.8998671262 0.8998411081 0.9000000000 0.0001328738 0.0001588919
1.0 0.9996715886 0.9995971250 1.0000000000 0.0003284114 0.000402875

MAE 5.29167× 10−5 6.403519× 10−4

FIGURE 1. SHAM of y(t)
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FIGURE 2. HPM of y(t)

FIGURE 3. Exact of y(t)

Solution of Exact and SHAM against t in application 1
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TABLE 3. Comparison of SHAM, HPM with Exact and absolute errors
for different values of t at x = 1 for aplication 2

t SHAM HPM Exact AESHAM AEHPM [10]
0.1 0.4065696592 0.4065696592 0.4065696597 0.00000000005 0.00000000005
0.2 0.4493289304 0.4493289304 0.4493289641 0.0000003370 0.0000003370
0.3 0.4965849149 0.4965849149 0.4965853038 0.00000003887 0.00000003887
0.4 0.5488094175 0.5488094175 0.5488116361 0.00000221860 0.00000221860
0.5 0.6065220683 0.6065220683 0.6065306597 0.00000859140 0.00000859140
0.6 0.6702940001 0.6702940001 0.6703200460 0.00002604590 0.00002604590
0.7 0.7407515275 0.7407515275 0.7408182207 0.00006669320 0.00006669320
0.8 0.8185798263 0.8185798263 0.8187307531 0.00015092680 0.00015092680
0.9 0.9045266111 0.9045266111 0.9048374180 0.00031080690 0.00031080690
1.0 0.9994058152 0.9994058152 1.0000000000 0.00059418480 0.00059418480

MAE 1.15954022× 10−4 1.15954022× 10−4

FIGURE 4. SHAM of v(t)
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FIGURE 5. Exact of v(t)

FIGURE 6. HPM of v(t)

Solution of Exact and SHAM of application 2
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TABLE 4. Comparison of Solutions of SHAM with Exact and absolute
errors for different values t of aplication 3

t x SHAM Exact AESHAM AEHPM [3]
0.2 0.01 0.002083200000 0.002083333333 8.320000000× 10−5 8.320000000× 10−5
0.4 0.01 0.002766400000 0.002777777778 4.330666670× 10−4 4.330666670× 10−4
0.6 0.01 0.003972266667 0.004166666667 1.30560000× 10−3 1.30560000× 10−3
0.8 0.01 0.006148800000 0.008333333333 3.148800000× 10−3 3.148800000× 10−3
0.10 0.01 0.01000000000 0.003333333333 6.666666667× 10−3 6.666666667× 10−3
0.2 0.05 0.01041600000 0.01000000000 4.160000000× 10−4 4.160000000× 10−4
0.4 0.05 0.01383200000 0.01166666667 6.252800000× 10−3 2.165300000× 10−3
0.6 0.05 0.01986133333 0.013333333333 6.252800000× 10−3 6.252800000× 10−3
0.8 0.05 0.0374400000 0.01500000000 1.574400000× 10−2 1.574400000× 10−2
1.0 0.05 0.05000000000 0.016666666667 1.33333333× 10−2 1.33333333× 10−2

FIGURE 7. SHAM of y(t)
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FIGURE 8. HPLTM of y(t)

FIGURE 9. Exact of y(t)

Solution of Exact and SHAM of application 3
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4. RESULTS AND DISCUSSION

Table 1 shows the results of the Eqn.(17) with its coresponding absolute error.
The maximum and minimum error calculated is 1.3287 × 10−3 and 2.0000 × 10−9.
These errors were compared with PITM in [18] which were 1.5889 × 10−3and
2.0000×10−9.Also, the MAE value for SHAM is 5.2845726×10−5 while that of [18]
was 6.403519 × 10−4 and this shows that SHAM performed slightly better than
the result of the referenced literature. The 3D plot of SHAM, PITM and Exact for
Eqn.(18) were presented and the shape of the figure are the same for the three
methods which demonstrated the behaviour of the classical equation of motion for
a free massive scalar field Klein Gordon equation.Table 2 shows the results of the
non linear gas dynamic partial differential together with absolute error which was
obtained by subtracting each result obtained at each values of t from the exact
solution ,it was observed that the Mean Absolute Error obtained from SHAM was
the same with the solution of [10] which shows that SHAM compared favourably
with the referenced solution. the graph agrees with each other as it describes the
behaviour of gases in motion under the influence of various forces.

The solution of Eqn.(25) was shown in Table 3 together with its absolute er-
ror from which it was observed that maximum and minimum error of SHAM is
1.5093 × 10−3 and 5 × 10−9.Which is the same result with that of [15]. The MAE
calculate for SHAM and that of HPM were the same which is 1.1595 × 10−4. fig-
ure 4, 5 and 6 are the graphical representation of the method considered with its
Exact, this graph show the behaviour of airflow over an aeroplane wing to flow
of water in a pipe which in essence means the effect of pressure, temperature as
well as density. The graphs were in excellent agreement with one another.The
solution of Eqn.(29) is presented in Table 3 together with its exact solution and
its absolute error. The maximum and minimum error for SHAM is 2.0686 × 10−3

and 1.852 × 10−5 respectively.These errors were obtained by finding the absolute
difference between the calculated values and the Exact values at each points, the
same result were obtained with that of [3]. MAE was as well the same and was
calculated as 1.9361 × 10−3. Figure 7, 8 and 9 were the graphical representation
of Eqn.(29) for SHAM, HPM and Exact. The figures shows the shape of waves in
shallow water and it was discovered that there is an agreement between the solu-
tion of the methods. The solution of the non linear KdV equation was presented
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in Table 3 with the Mean Absolute Error (MAE) calculted, the obtained MAE was
the same with that of Ahmet (2009) and this demonstrated the efficiency and
applicability of SHAM, the graphs also agrees with that of the reference solution.

5. CONCLUSION

This work has achieved successful applications of the homotopy analysis Sawi
transform method to solve nonlinear Klein-Gordon and Korteweg-deVries (KDV)
equations. Through the consideration of three examples, the results obtained
demonstrate the efficiency and effectiveness of the proposed method. Further-
more, the method’s versatility is highlighted, as it can be applied to solve various
types of higher-order nonlinear differential equations, whether they are partial or
ordinary differential equations.

REFERENCES

[1] B.S. ABBAS: The application of homotopy analysis method to solve a generalized hirota-
satsuma coupled kdv equation, Physics letters, section A, 362(6) (2007), 478-483.

[2] S. AGGARWAL, M. RASHMI, A. KUMAR: A comparative study of Mohand and El-zaki trans-
forms, Global Journal of Engineering, Science and Researches, 6(2) (2019), 203-213.

[3] Y. AHMET: on the solution of the nonlinear Korteweg-de-Vries equation by the homotopy per-
turbation method, Commun. numer. meth. Engng, 2009(25) (2009), 1127-1136.

[4] S. ALI, R. ESSAM, M.D.A. EL-ZAHAR, D.C. JAE: An efficient approach for solution of
Fractional-order Helmholtz Equations, Advance in Difference equation, 2021(14) (2021), 1-
15.

[5] G.B. ARFKEN, H.J. WEBER, E.E. HARRIS: Mathematical methods for physicists (7th Ed.),
Academic press, 2012.

[6] T.G. ATANASKA, P. ALBENA: Application of the double Fuzzy Sawi transform for solving a
telegraph equation, Symmetry, 15) (2023), art. np. 854.

[7] B. BATIHA B: Variation Iterative method for solving the nonlinear Klein-Gordon equation,
Australian Journal of Basic and Applied sciences, 3(4) (2009), 3876-3890.

[8] M.S.H. CHOWDHURY,I. HASHIM: Application of homotopy perturbation method to klein-
Gordon and sine-Gordon equations, Chaos Solitons Fractals, 39(4) (2009), 1928-1935.

[9] P.P. DINKAR: Application of Sawi transform of Error Function for evaluating improper inte-
gral,Journal of research and development, A multidisciplinary international level referred and
peer reviewed journal, 11(20) (2021), 41-45.

[10] A. EMAN, F. ASAD: Analytical and numerical solution for fractional gas dynamic equations
using Residual Power Series Method, 2018, 1-7.



114 R.A. Oderinu, K.A. Salaudeen, W.A. Tijani, and S.O. Sangoniyi

[11] G.B. FOLLAND: Fourier Analysis and its applications (2nd Ed.), American Mathematical Soci-
ety, 2013.

[12] E. HETMANIOK, D. SLOTA, T. TRAWINSKI, R. WITULA: Usage of the homotopy analysis
method for solving the nonlinear and linear integral equations of the second kind, Numerical
Algorithms, 67(1) (2014), 163-185.

[13] M. HIGAZY, A. SUDHANSHU, N.A. TAHER: Sawi Decomposition method for volterral in-
tegral Equation with application, Hindawi Journal of Mathematics, (2020), Art. id. 6687134,
1-13.

[14] M. HIGAZY, A. SUDHANSHU: Sawi transformation for system of ordinary differential equa-
tions with Application, Ain Shams Engineering Journal, 2021(12) (2021), 3173-3182.

[15] J. HOSSEIN, M. ZABIHI, M. SAIDY: Application of homotopy perturbation method for solving
gas dynamics equations, Applied Mathematics Sciences, 2(48) (2008), 2393-2396.

[16] V.K. INGLE, J.G. PROAKIS: Digiyal Signal processing using MATLAB Gengage Learning, 2014.
[17] V. JAVAD: The combined Laplace Homotopy analysis method for partial differential equations,

Journal of Mathematics and computer Science, 2016(16) (2016), 88-102.
[18] M. KHALID, M. SULTANA, F. ZAID, A. UROOSA: Solving linear and non-linear Klein-

Gordon Equations by New perturbation iteration Transform method, TWMSd, App. Eng.Math.
6(1) (2016), 115-125.

[19] S.J. LIAO: The proposed homotopy analysis technique for the solution of nonlinear problems,
Ph.D thesis, Shanghai Jiao Tong University, 1992.

[20] S.J. LIAO: On the homotopy analysis method for nonlinear problems, Applied Mathematics
and Computation, 147(2) (2004a), 499-513.

[21] S.J. LIAO: Beyond pertubation: Introduction to the Homotopy Analysis method, Modern Me-
chanics and Mathematics, Chapman & Hall/CRC, Boca Raton, Fla, USA, Vol. 2 of CRC series,
2004b.

[22] S.J. LIAO: Compaison between the homotopy Analysis method and homotopy perturbation
method, Applied Mathematics and Computation, 169(2) (2005), 1186-1194.

[23] S.J. LIAO: Notes on the homotopy analysis method: some definitions and theorems, Commun.
Nonlinear Sci. Numer. Simul., [2009(14) (2009), 983-997.

[24] M.A.M. MOHAND: The New Integral Transform "Sawi transform", Advances in Theoretical
and Applied Mathematics, 14(1) (2019), 81-87.

[25] F.K. MOHANNED, A. ALI: Solving Fredholm Integrol Differential equation of fractional order
using Sawi homotopy perturbation Method, 3rd International Conference on Mathematics
and Applied Science (ICMAS 2022), Journal of Physics: Conference Series, 2322.

[26] ODIBAT, S. AND MONAMI: A reliable treatment of homotopy perturbation method for Klein-
Gordon equations, Physics letters A, 365) (2007), 351-357.

[27] A.W. OGUNSOLA, R.A. ODERINU, T. MUSILIMU, J.A. OWOLABI: Application of Laplace
Decomposition Method to Boundary value Equation in a semi-infinite Domain, International
Journal of Difference equation, 17(1) (2022), 75-86.



DEFORMATION BASED SAWI’S TRANSFORM 115

[28] M. RASHED, O.K. PASHAE: Integral transforms and their applications, CRC press, 2017.
[29] R.A> SAMEEHAH, A.H.M. AHMAD, S.H. MBROKA: Triple Shehu transformand its prop-

erties with applications, African journal of Mathematics and Computer Science Research,
14(1) (2021), 4-12.

[30] M. SHEHU, Z. WEIDONG: New homotopy Analysis transform method for solving multidimen-
sional fractional diffusion equations, Arab Journal of Basic and Applied Sciences, 27(1)
(2020), 27-44.

[31] A. SUDHANSHU, D.S. SWARG, V. AAKANSHA: Sawi Transform of Bessel’s functions with
Application for Evaluating Definite integrals, International journal of Latest Technology in
Engineering, Management and Applied Science(IJLTEMAS), ix(vii) (2020a), 12-18.

[32] A. SUDHANSHU, V. AAKANSHA, D.S. SWARG: Mohand transform for handling Convolu-
tion Type Volteral integro-differential equation of first kind, International Journal of Latest
Technology in Engineering, Management & Applied Science, 9(7) (2020b), 13-19.

[33] G. SUMIT, S. JAGDEV, D. KUMAR: Application of Homotopy perturbation transform method
for solving Time-dependent fractional differential equations, International Journal of Nonlin-
ear Science, 16(1 (2013), 37-49.

[34] M.A. USMAN, M.T. SHITTU, O.O. SOLANKE, S.A. ONITILO: Analytical solution of the
Relativistic Klein-Gordon wave equation, LAUTECH Journal of Engineering and technology,
13(2 (2019), 19-29.

[35] Q.H. YAHYA, A.O. ADEGBINDIN, M.D. NUHA, A.A. SOMAIA, G.O. SUMAYAH, A.A.
ZAINAB: Approximate Analytical Solution of Klein-Gordon equations by the modified Adomian
Decomposition Method, Advances in Mathematics: Scientific Journal, 9(11 (2020), 9079-9087.

1,3LADOKE AKINTOLA UNIVERSTY OF TECHNOLOGY, DEPARTMENT OF PURE AND APPLIED MATHE-
MATICS, OGBOMOSO, NIGERIA.

Email address: 1raoderinu@lautech.edu.ng.

2,4EMMANUEL ALAYANDE UNIVERSITY OF EDUCATION, DEPARTMENT OF MATHEMATICS AND COM-
PUTING SCIENCE EDUCATION, OYO, OYO STATE, NIGERIA.

Email address: 2salaudeenka@eauedoyo.edu.ng

Email address: 3adiguntijani111@gmail.com

Email address: 4sangoniyisunday@eauedoyo.edu.ng


	1. Introduction
	2. Concept of Homotopy Analysis Methods
	3. Definition of Sawi Transform
	3.1. Deformation Based Sawi's Transform (SHAM)
	3.2. Application 1
	3.3. Application 2
	3.4.  Application 3

	4. Results and Discussion
	5. Conclusion
	References

