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AN APPROACH OF MEAN-SETS THEORY FOR NEGATIVELY CURVED
CONVEX COMBINATION POLISH METRIC SPACES
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ABSTRACT. The choice of a convenient approach to be used is one important issue
when attempting to develop methods or obtain results in the setting of Probabil-
ity on general metric spaces. In this paper, we extend the mean-sets probabilistic
approach formally introduced by Mosina on locally finite graphs, and hence (via
Cayley graphs) on finitely generated groups, to the field of Negatively Curved
Convex Combination Polish (NCCCP) metric spaces. We construct an appropri-
ated Vertex-Weighted Metric (VWM) graph in the framework of this class of ge-
ometrical structures. We define a function called convexification function on the
direct product of n copies of the vertex-set of this graph (for a given fixed integer
n ≥ 2), using the natural convexification operator of the metric space concerned.
This function is then used to construct a weighted mean-set that generalizes the
notion of convex combination (CC) mean in the sense of Terán and Molchanov,
the mean-set concept according to Mosina and the ordinary notion of k-means
(k ≥ 2) of independent identically distributed (i.i.d.) random elements of the
metric space. Two numerical examples are given for the cases when the metric
space X = [0, 1] and X = R2. Moreover, an analogue of the Strong Law of
Large Numbers (SLLN), the consistency problem and the Chebyshev’s inequality
for NCCCP spaces are established.
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1. INTRODUCTION

In the field of Probability Theory like in Statistics, real or vectorial random vari-
ables have been basically considered and several results have been established. To-
day, major papers about some concepts like expectation (average) and SLLN aim
to generalize these to non linear classes of sets, devoid of vectorial structure, such
as: graphs of finitely generated groups [12, 23, 25, 27], general graphs [2, 9, 18],
trees [3], Polish metric spaces [1, 4, 5, 13, 14, 17, 21, 22, 28, 37], non-separable
metric spaces [9], negatively curved metric spaces [13, 14, 31, 32], metric spaces
endowed with a convex combination (CC) operation (also called convex combi-
nation metric spaces) [4,5,13,34,37], spaces of compact sets [9,11] and regular
topological spaces [36]. The SLLN in particular is in great demand for its many im-
plications which, beyond Probability Theory and Statistics, are increasingly found
in various fields like Engineering [24, 29, 30], Physical sciences [6] or Cryptogra-
phy [16, 25–27], where randomness influences the dynamic behavior of so many
phenomena.

In her 2009 PhD thesis, N. Mosina [25] introduced a new probabilistic approach
called "Mean-sets Theory" that allows to define the concept of mean-set (in effect,
the set of Fréchet means) of a graph/group random variable as the average-object
(expectation) in the sense of Fréchet [17]. She also supplied an efficient algo-
rithm for the computation of this mean-set, following Monte-Carlo’s approximate
calculation method for the field of real numbers. Accordingly, a version of the
SLLN for a sequence of mutually independent and identically distributed (i.i.d.)
graph/group valued random variables was established as well as an analogue of
Chebyshev’s inequality. These results make this mean-set a viable statistical tool
for some algorithms involving groups, such as in group-based cryptography. Since
then, the idea of Mosina has been used a few times, but seems to be relatively little
explored compared to more well-known probabilistic approaches, such as random
walks on groups.

Remind that giving a meaning to the notion of (mathematical) expectation or
average of a sample of graphs/groups valued random variables is not an easy
task. Things become more complex when some theoretical results obtained via
the newly constructed mean-sets probabilistic approach are to be generalized to
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non vectorial spaces with no algebraic properties but having a compatible topol-
ogy or compatible distance function like metric spaces. This problematic is still
open for general metric spaces. Therefore, the main question that emerges won-
ders about a possible connection between the Mean-sets theory and general metric
spaces. What changes with this theory if we ignore the algebraic properties of the
groups and only consider their geometric structure as metric spaces? Can Mosina’s
results be extended to general metric spaces devoid of an algebraic structure and
classical operations such as addition and product, but whose geometric conditions
offer issues and tools for averaging? The openness given by one Mosina’s en-
deavors coupled to our state of art synthesis, allow to tackle this question in this
paper. Indeed, what impact Mosina’s original probabilistic approach can have on
definitional frameworks and properties of the mean (expectation) and SLLN con-
cepts in metric spaces, whose already have a fairly rich literature on the subject?
Having in mind that the Mean-sets theory is built on finitely generated ordinary
groups, some fundamental principles used in geometric group theory have to be
investigated. Notably, connections between algebraic, topological and geometric
properties of the spaces on which these groups can act. This concerns NCCCP,
i.e. negatively curved Polish metric spaces (by considering only its geometric as-
pect without recourse to algebraic structure which supports it) with the convex
combination operation defined in the sense of Terán and Molchanov [34].

A motivating element when looking for an answer to this problematic is based
on the fact that very often in such spaces (like separable Banach spaces), convex
subsets appear as limits for the law of large numbers, since they are decomposable
with respect to Minkowski addition [4,5,34]. Also, to each random variable with
values in such a space, the negative curvature property assigns a unique barycenter
or mean (expectation). Moreover, the concept of Fréchet mean used by Mosina
gives way to generalize several notions of average in abstract spaces, while of-
fering for some applications in many fields including cryptography [18, 25, 26].
Moreover, we assume that going from random variables taking values over count-
able sets, as in Mosina’s work, to those defined over the metric graphs vertex-set
of a NCCCP space does not matter at all.
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This work is split into five sections. Section 2 is the state of art. Section 3 con-
cerns some preliminaries. First comes a short presentation of the mean-sets prob-
abilistic approach. After, some reminders on some crucial notions are recorded
in order to build vertex-weighted metric graphs. In section 4, we present some
useful results as tools that will help to build a theoretical mean-sets approach for
NCCCP spaces. We also give a practical numerical example of the mean-set of a
uniform distribution. Our main results are acheived in Section 5, including a new
topological characterization of mean-sets, the SLLN and the Tchebychev inequality
for NCCCP spaces.

2. STATE OF ART

A good remind of some existing definitions of the two probabilistic concepts
namely mean-set (expectaton) and SLLN for several metric spaces has been taken
up in [4, 5, 27]. In this section, we present some two additional one which are of
great interest in our work.

2.1. Some expectations (means) and SLLNs.

2.1.1. Expectation and SLLN according Herer. Let (X, dX) be a complete separable
metric space with negative curvature and ξ a random X-variable point defined on
(Ω,F ,P), equipped with Borel tribe B(X) and with distribution µξ. Define the set
π = {A1, . . . , An} ⊂ F as a finite partition of Ω and put xi = ξ(Ai) ∈ X. The
random variable ξ takes the form of a µξ simple step-function such that

ξ(ω) =
∑
i=1...n

xi · 1Ai
(ω), for all ω ∈ Ω.

Let
∏
(ξ) be the set of all non-empty finite partitions of Ω such that ξ is constant

on Ai’s compartments. For π ∈
∏
(ξ), we define the set Eπξ =

∑
A∈π

P(A)ξ(A). the

Herer expectation [21] of a stepped random X-variable ξ, also called mathemati-
cal expectation of ξ, is the closed set

Eξ =
⋃

π∈
∏

(ξ)

Eπξ.
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With this concept, Herer establishes a version of strong law of large numbers for
finitely compact NCCCP metric spaces (X, dX) by using Hausdorff convergence on
finite non-empty subsets of X, i.e. Lim

n
Fn = F if and only if lim

n
dHaus(Fn, F ) = 0.

Herer strong law of large numbers: Let {ξn}n=1,...,∞ be a sequence of i.i.d.
integrable random X-variables and write Fn(ω) =

∑
i=1...n

1
n
ξi(ω), for ω ∈ Ω and

n = 1, 2, . . .. Then Lim
n
Fn(ω) = Eξ1 almost surely (a.s.) [22].

2.1.2. Barycenter and convex combination mean according to De Fitte. Refering to
Herer’s expectation, De Fitte [13, 14] extends the same concept to sequences of
random independent and equidistributed points in NCCCP spaces. In his ap-
proach, he makes a difference between the mean (average) of a probability µ

when the probabilistic space has atoms and when it has atoms as large as possible.
In the first case and under condition

∫
X
d(a, x)dµ(x) < ∞, the barycenter of

µ, denoted by b(µ), is equal to Herer expectation of a random point defined on
([0, 1],B([0, 1]),P) with law µ, where P is the uniform probability on the Borel
tribe B([0, 1]).

In the second case, the mean of µ, called convex combination mean of µ and
denoted by c(µ) is the Herer expectation of ξ relative to (Ω,Fξ,Pξ), where Fξ

represents the tribe generated by ξ (i.e. the poorest in terms of open sets on which
ξ is measurable) and Pξ is the restriction of P to Fξ.

In general, the double inclusion c(µξ) ⊂ Eξ ⊂ b(µξ) holds (See [21], Remark
1.1.).

To this two definitions, we can add the version according to Terán and Molchanov.
But we shall come back to it with more details in Subsection 3.2, when talking
about the convex combination metric spaces.

The next section represents the Preliminaries for our work including some no-
tations and background theory which will be used in Sections 4 and 5.

3. PRELIMINARIES

We start with a short overview on the Mean-sets probability theory introduced
by Mosina. After this, we define the CC operation and some general properties
of CC spaces. We end with a brief description of the convergence of minimizing
sequences as well as the notion of τ -convergence.
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3.1. Mean-sets Probability Theory by Mosina. Given a group G and a probabil-
ity distribution P induced by random G-variables ξ. We endow Cayley graphs of
G with word metric and we define a weight-function on these graphs. Let S be
a non-empty generating subset of the group G. Let Γ = (V Γ,EΓ ) be the Cayley
graph of G, (Ω,F ,P) a probabilistic space.

3.1.1. Some mean-sets probability tools. A probability measure on G attached to a
random G-variable ξ is a function defined on G by µξ(g) = P({ξ−1{g} ∈ Ω}), for
all g ∈ G.

Weight-function: The weight-function, denoted Mξ : V Γ → R+ = [0,+∞], is
defined on V Γ by Mξ(g) =

∑
s∈G d

2
G(g, s)µξ(s), for g ∈ G, where dG is the Cayley

distance (or word distance) on CG(S).
The domain of Mξ is the set dom(Mξ) = {g ∈ V Γ | Mξ(g) < ∞}. The weight-

function Mξ is totally defined if dom(Mξ) = V Γ .
Mean-set: In the case when Mξ is totally defined, the expectation or mean-set

of ξ is defined to be the set of objects g ∈ V Γ that minimize the weight-function
Mξ, i.e.

Eξ = {g ∈ V Γ |Mξ(g) ≤Mξ(h), for allh ∈ V Γ}.

Let (ξi)i=1,...,n be a finite sequence of mutually i.i.d. random V Γ -variables on
(Ω,F ,P).

Sampled weight-function: The probability distribution µn : V Γ → [0, 1] on G

is defined by the relative frequency

µn(g) = µn(g, ω) = n−1 × |{i | ξi(ω) = g, 1 ≤ i ≤ n}|.

The sampled weight-function Mn : V Γ → R+ is defined by:

Mn(g) =
∑
s∈G

d2G(g, s)µn(s),

where dG is a metric on Γ .
Sampled mean-set: The sampled mean-set of (ξi)i=1,...,n is the set Sn defined

by: Sn = S(ξ1, . . . , ξn) = {g ∈ G/Mn(g) ≤Mn(h), for allh ∈ G}.
Shift property: The function ξg : Ω → G defined by ξg(ω) = gξ(ω), for ω ∈ G,

satisfies the property Eξg = gEξ. This equality is similar to the linearity property
of a classical mean in the domain of real variables.



MEAN-SETS THEORY FOR NCCCP METRIC SPACES 151

3.1.2. SLLN for graphs/groups.

Theorem 3.1. (SLLN) ( [25,27]) Let Γ = CG(S) be a locally-finite connected graph
of G = ⟨S⟩, for a finite subset S, and (ξi)i=1...∞ a sequence of mutually i.i.d. random
V Γ -variables such that Mξ1 is totally defined on V Γ and Eξ1 is a singleton of V Γ .
Then S(ξ1, . . . , ξn)−→Eξ1 almost surely when n→ ∞.

3.1.3. Chebyshev’s inequality for graphs/groups.

Theorem 3.2. ( [25, 27]) Let Γ = CG(S) be a locally-finite connected graph of
G = ⟨S⟩, for a finite subset S, and (ξi)i=1...∞ a sequence of mutually i.i.d. random
V Γ -variables such that the weight-function Mξ1 is totally defined on V Γ . Then there
exists a constant C = C(Γ, ξ1) > 0 such that

P ({∃u ∈ V Γ \ Eξ1 s.t.Mn(u) ≤Mn(v), v ∈ Eξ1}) ≤ Cn−1.

This short presentation only partially reveals the deepness of the mathemati-
cal background attached to the Mean-sets probabilistic approach and its fields of
applications, particularly in the world of Digital computing through group-based
Cryptography. For more details, see e.g., [16,25–27].

We now give a short reminders on Polish metric spaces endowed with a CC
operation also called convex combination Polish spaces. One can also see in [11,
37].

3.2. Convex combination Polish spaces. Consider a Polish metric space (X, dX)

provided or not with a usual algebraic addition operation. We will focus on Terán
and Molchanov [34] approach of the notion convex combination. The version of
Herer can be found in [21,22].

3.2.1. Convex combination according to Terán and Molchanov. A convex combina-
tion on X is an operation, denoted by [·, ·], which assigns to any finite sequence of
elements x1, x2, . . . xn ∈ X (n ≥ 2) and reals λ1, . . . λn > 0 such that

∑n
i=1 λi = 1, a

special element of X, denoted by

[λi, xi]
n
i=1 = [λi, xi]i∈{1,...,n} = [λ1, x1; . . . ;λn, xn],

which satisfies a number of algebraic, analytic and topological properties notably:
commutativity, associativity, continuity, negative curvature, convexification. The
reader can refer to [4,5,34,37] and references therein for more details and proofs.
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A point z ∈ [λi, xi]
n
i=1 if z can take the form

z =

[
m1

[
λj
m1

, xj

]
j∈I1

;m2

[
λj
m2

, xj

]
j∈I2

]
where I1 and I2 are a partition of the set {1, . . . , n} and mℓ =

∑
i∈Iℓ

λi for ℓ ∈ 1, 2.

The metric space (X, dX) is called convex (respectively strictly convex) if the
set λx + (1 − λ)y is non-empty (respectively a singleton), for all x, y ∈ X and
λ ∈ [0, 1]. In the case of strict convexity, the set λx + (1 − λ)y is simply identified
with its single element.

A metric space endowed with a CC operation that satisfies the five properties
listed above is called a convex combination (CC) space [34, 37]. And any nega-
tively curved Polish metric space with a CC operation is just a NCCCP space.
Convexification operator K: Let (X, d) be a convex combination Polish space,
i.e. a Polish metric space endowed with a CC operation (in the sense of Terán and
Molchanov). The convexification operator of X is a linear operator K : X −→ X,
which assigns to every x ∈ X, the limit of an iteration of the convex combination
of the same element with uniform weights n−1 (n ≥ 2), i.e. for all x ∈ X,

Kx = lim
n→+∞

[n−1, x]ni=1.

The image of x, i.e. Kx, is therefore called the convexifier of x. An element x ∈
X admits a convex decomposition if and only if it can take the form x = [λi, x]

n
i=1,

with n ≥ 2, λ1, . . . , λn > 0 and
∑n

i=1 λi = 1. The convexifiable domain of X,
denoted by K(X), is the set of elements of X admitting convex decompositions.
Therefore, K(X) ⊆ X. The space X is called convexifiable if K(X) = X. In this
case, the attached CC operation [·, ·] is called unbiased.

The operator K is linear in X (i.e. K[λi, xi]
n
i=1 = [λi,Kxi]ni=1), idempotent in X

(i.e. K2 = K) and non-expansive for the metric dX (i.e. dX (Kx,Ky) ≤ dX(x, y), for
all x, y ∈ X). For the proofs (see, e.g., [4,5,34,37]).

Thuan [37] used the approach of Terán and Molchanov to show that, for a
complete metric spaceX, there exists an isometric embedding of K(X) in a Banach
space and this embedding preserves CC structure (see Theorem 3.3).

It is proved that in CC spaces, one can construct a single point-valued expecta-
tion called convex combination expectation which satisfies the SLLN (see [34]).
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A situation that is quite different from the case in the general setting of metric
spaces, where the expectation is frequently defined as a set which may be of mul-
tiple point-valued.
CC expectation and SLLN according to Terán and Molchanov: Let ξ be a mea-
surable X-valued function defined on a probability space (Ω,F ,P). There exists a
partition {Ω1, . . . ,Ωm} of non-empty measurables of Ω, such that ξ takes a constant
value xj on each subset Ωj, for j = 1, . . . ,m.

The CC mean is defined to be the set

Eξ = [P(Ωj),Kxj]mj=1 .

Theorem 3.3. ( [34]) Let ξ ∈ L1
X and let (ξ1, ξ2, . . . , ξn) be a sequence of random

elements with the same distribution as ξ. Then the convergence [n−1, ξi]
n
i=1

a.s.−→ Eξ
when n→ ∞, is feasible with a probability equals to 1.

Proof. See [34]. □

Remark 3.1. In a Polish metric space X equipped with a CC operation [·, ·], the
invariant elements of the convexification operator K of X appear as limits for the
SLLN [34, 37]. The idea of defining the mean-set of a random distribution using
convex combination of finite set of k elements has led to approximating this distri-
bution by a sequence of k points (k ≥ 2 a fixed integer). There arise the problem of
convergence of minimizing sequences of k-means.

The problem of convergence of minimizing sequences of k-means involved the
notion of set convergence, with two well adapted tools, actually Hausdorff conver-
gence and τ -convergence. The Hausdorff convergence often refers to the notion
of strong convergence, while the τ -convergence, which is not always comparable
with metric, but under certain conditions on the structure of space, generalizes
the convergence in the sense of Hausdorff. If the case, one talks about τ -Hausdorff
topology [10,24].

3.3. Convergence of minimizing sequences and the notion of paths.

3.3.1. τ -convergence. A sequence Hn,ℓ of n-elements sets of converges (weakly) to
Hn,1 when ℓ → ∞ if there is a subsequence of points, denoted by {hℓi1 , . . . , h

ℓ
in},

extracted from Hn,ℓ for ℓ ≥ 1, such that hℓij −→ h1ij (weak convergence) when
ℓ→ ∞, for j = 1, . . . , n.
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Also, a sequence (xn) ⊂ X converges weakly to x ∈ X if f(xn) → f(x), for all
f ∈ X⋆, where X⋆ represents the dual space of X (see [35]).

If (X, dX , τ) is a metric space endowed with a τ -Hausdorff topology, then the
map dX(·, y) : (E, τ) −→ R is sequentially weakly semi-continuous. If in addition,
ϕ : R+ → R+ is a continuous and strictly monotone function such that ϕ(0) = 0,
then ϕ ◦ dX is also sequentially weakly semi-continuous. And more if xn

τ−→ x

then lim inf ϕ(dX(xn, y)) ≥ ϕ(dX(x, y)), for all y ∈ X. Similarly, if xn
τ−→ x in X

and ∥xn∥ −→ ∥x∥ then xn −→ x.
For normed vector spaces (X, ∥·∥), the notion of τ -convergence coincides with

the weak convergence topology. For more details about these concepts, see e.g.,
[24,29,30,35].

Now, talking about sets convergence, let E be the set of non-empty finite subsets
of (X, τ). Hausdorff metric on E is denoted by dHaus and defined by

dHaus(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
.

If U ⊂ E , then the convergence in the Hausdorff sense of An’s to a set A ∈ U is
traduced by (

An
dHaus−→ A ∈ U

)
⇐⇒

(
inf
B∈U

dHaus(An, B) −→ 0

)
.

That is, An
dHaus−→ A ∈ U if every subsequence of {An} admits a subsubsequence

{Anr} which converges to the element A of U . The converse of this statment is not
always true.

3.3.2. Quantization and minimizing sequences of k-means. Consider k = n and
let Hn = {h1, . . . , hn} represents the general term of the consecutive observa-
tions sequence necessary for the computation of the n-mean of a random vari-
able ξ with distribution µ. The convergence of sequences (Hn,ℓ)ℓ≥1 of finite sets
Hn,ℓ = {hℓ1, . . . , hℓn} of n elements, that minimize a weight-function of multi-vertex
arguments is studied in [24, 30]. To acheive this, a measure of probability P with
support T and a functional θ(·,P) : E −→ R+, called "loss function" are consid-
ered. And the function θ(A,P) =

∫
X
ϕ ◦ d(x,A)P(dx), is defined on the set E of

finite parts A ⊂ X, where d(x,A) = min
a∈A

d(x, a) is the distance from point x to the



MEAN-SETS THEORY FOR NCCCP METRIC SPACES 155

set A and ϕ is a suitable function (i.e. a continuous and strictly increasing function
such that ϕ(0) = 0).

The finiteness assumption for the function θ(·,P) should be an analogous con-
dition to the totally defined property required for the Mosina’s weight-function.
In fact, this property is simply a combination of Lember’s (P1) and (P2) proper-
ties [24]. Pollard [29] studied strong consistency of "k-means" using as Lember,
the same functionals θ(·,P) and θ(·,Pn). As a result, he found that for all A ∈ E ,
the value θ(A,P) =

∫
X
min
a∈A

∥x− a∥2P(dx) is the limit under strong convergence of

the sequence with general term θ(A,Pn), when n→ +∞.
The next subsection is a short reminder on the notions of paths and homotopy

of paths.

3.3.3. Paths and homotopy of paths. Let (X, dX) be a pseudometric space, i.e. a
set X equipped with a numerical application dX which satisfies the symmetric,
triangular inequality properties and the condition dX(x, x) = 0 (meaning that
dX does not necessarily respect the axiom of coÃŕncidence). A path in X is a
continuous mapping γ : [0, 1] −→ X whose origin is γ(0) and γ(1) the terminus. If
γ(0) = x and γ(1) = y, then we say that γ is a path joining x to y. If for all x, y ∈ X

there exists such a path γ such that γ(0) = x and γ(1) = y, then the space (X, dX)

is said to be connected by arcs.
We denote by Cx,y([0, 1], X) the set of all paths joining x to y in X. For all

x ∈ X, the constant path γx with origin and terminus x is defined, for all t ∈ [0, 1],
by γx(t) = x. Any two paths γ, γ′ ∈ Cx,y([0, 1], X) are said to be homotopic if
there exists a continuous map F : [0, 1] × [0, 1] −→ X, which satisfies both of the
following properties:

(i) F (t, 0) = γ(t) and F (t, 1) = γ′(t), for all t ∈ [0, 1].
(ii) F (0, s) = x and F (1, s) = y, for every s ∈ [0, 1].

Then the map F is a homotopy of paths joining x to y.

On the set Cx,y([0, 1], X), the relation denoted by R and defined by γRγ′ if
and only γ and γ′ are homotopic, is an equivalence relation. Let Πx,y(X) denotes
all of its homotopy classes. Write Π(X) =

⋃
x,y∈X

Πx,y(X) and [γ] an element of

Πx,y(X). On Π(X), define an internal composition law, denoted by "·" and defined
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by [γ] · [γ′] = [γγ′], where γγ′ is the composed path of γ and γ′ when it makes
sense, i.e. when γ(1) = γ′(0).

4. NOTATION AND USEFUL RESULTS

We start by the construction of vertex-weighted metric graphs for NCCCP metric
spaces which will played the same role as Cayley graphs for finitely generated
groups [25]. After, we define the concept of mean-sets expectation for this class
of metric spaces supplimented with a computational example.

4.1. Conctruction of metric graphs for NCCCP spaces.

4.1.1. A compatible word metric on NCCCP spaces. Let (X, dX) be a NCCCP (pseudo)
metric space and c > 0 a real. For any x, y ∈ X and n ≥ 0, a c-path of n steps
from x to y in X is a sequence x = h0, h1, . . . , hn = y of points in X such that
0 < dX(hi−1, hi) ≤ c for i = 1, . . . , n. We also talk about c-path of n steps from x to
y and with length-step at most or equal to c in X. Let E be the subset of X × X

containing the diagonal diag(X).
Let RE be the equivalence relation in X attached to E and defined by: (x, y) ∈

RE if there exists a finite sequence (h0 = x, h1, . . . , hn = y) of points in X such
that (hi−1, hi) ∈ E, for i = 1, . . . , n. The space X is said to be an E-chained if the
relation RE is trivial, i.e. (x, y) ∈ RE ⇐⇒ (x = y).

To define a generalized metric on X that is very closed to the ordinary word-
metric used by mosina on Cayley-graphs, we started with the map δE : X×X −→
N by

δE(x, y) = inf

{
n ≥ 0 |

∃(h0 = x, h1, . . . , hn = y) ∈ Xn+1with
(hi−1, hi) ∈ E for i = 1, . . . , n

}
.

But this metric δE doesn’t take into account the metric dX of the original space
X. A situation that doesn’t really satisfy enough, since the topology of a metric
graph should depend fundamentally on that of the attached metric space. There-
fore, we need more, i.e. finding a suitable compatible metric of the graph that
meets this requirement.

Under the same assumptions on set E and relation RE as fixed previously, we
define a compatible word metric on a NCCCP space (X, dX) as follows.
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Definition 4.1. ( [12]) A compatible word metric on the (X, dX) is the function,
denoted by δE,dX : X ×X −→ R+ and defined by:

δE,dX (x, y) = inf

{
n∑
i=1

dX(hi−1, hi) |
∃(h0 = x, h1, . . . , hn = y) ∈ Xn+1 with

(hi−1, hi) ∈ E for i = 1, . . . n

}
.

Observe that, for all x, y ∈ X, the inequality dX(x, y) ≤ δE,dX (x, y) holds. And,
infinimas of δE,dX can only be achieved on c-good E-paths having their elementary
origins and ends in the subset E.

A path (h0 = x, h1, . . . , hn = y) is said to be c-good [12] if n ≤ 1 or, as soon as
n ≥ 2, dX(hi−1, hi) + dX(hi, hi+1) > c, for all i = 1, . . . , n − 1. Hence, if x, y ∈ X

with δE,dX (x, y) < c or dX(x, y) < c then δE,dX (x, y) = dX(x, y).

Remark 4.1. Coming up to geometric group theory as we are looking up to generalize
Mean-sets theory to general metric spaces, notice that if X = G = ⟨S⟩ is a group with
S a symmetric generator set containing the identity element 1G and if E = {(g, h) ∈
G × G | g−1h ∈ S}, then δE,dX is just the weighted word metric which extends the
usual word distance defined in Cayley graphs of G.

The function δE,dX is a word-weighted compatible metric onX which thereby shares
some interesting topological properties with dX , thanks to the notion of control.

The notion of (c, C)-control. The notion of control here helps to insure the
conservation of topological structure of (X, δE) while embedding in (X, δE,dX ).

Let (X, dX) be an E-chained NCCCP space with E ⊂ X ×X symmetric contain-
ing the diagonal diag(X) of X. Let c, C ∈ R⋆

+. The triple (X, dX , E) is said to be
(c, C)-controlled E-chained NCCCP space if for all x ∈ X,

BX(x, c) ⊂ {y ∈ X | (x, y) ∈ E} ⊂ BX(x,C)

holds, where BX(x, r) = {y ∈ X | dX(x, y) ≤ r} is the closed ball in X with center
x and radius r > 0.

Some geometric properties under (c, C)-control assumptions of the metric space
X are recorded in the next Lemma.

Lemma 4.1. ( [12]) Let (X, dX) be an E-chained NCCCP space with E ⊂ X × X

symmetric containing the diagonal diag(X). Let c, C ∈ R⋆
+ such that (X, dX , E) is

(c, C)-controlled. Then
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(i) If x, y ∈ X are such that δE,dX (x, y) < c or dX(x, y) < c then δE,dX (x, y) =

dX(x, y).
(ii) For all x, y ∈ X, c

2
(δE(x, y)− 1) ≤ δE,dX (x, y) ≤ CδE(x, y) hold.

(iii) The functions δE and δE,dX are quasi-isometric pseudometrics on X.
(iv) When X is a topological space with dX continuous then δE,dX is also contin-

uous.

Proof. See [12] (Lemma 4.B.7) for more details. □

In Lemma 4.1 above, property (ii) implies that the map (X, δE) −→ (X, δE,dX ) is
a Lipschitz self embedding ofX. Therefore, there exist two real constants c1, c2 > 0

such that for all x, y ∈ X, we have 1
c2
δE(x, y) ≤ δE,dX (x, y) ≤ c1δE(x, y). Indeed,

just consider c1 = C and c2 = 2
c
.

4.1.2. Metric graph equipped with a weighted word metric. Let (X, dX) be an E-
chained NCCCP space and (XHaus, dHaus) the greatest Hausdorff quotient of X, en-
dowed with its natural metric dHaus, where XHaus = X/ ∼ is the quotient of X by
the relation

x ∼ y iff δE,dX (x, y) = 0.

The metric graph ΓX = (V ΓX , EΓX) attached to X is the chained (or con-
nected) graph having V ΓX = XHaus as the set of vertices and EΓX = EHaus as the
set of edges, consisting of all the connections between pairs (x̃, ỹ) ∈ V × V , with
0 < dHaus(x̃, ỹ) ≤ c for a fixed c > 0.

Consider the diagram

(X, dX) −→
φ

(X, δE,dX ) −→
ψ

(XHaus, dHaus)

in which the embedding φ and the isomorphism ψ are both lipschitz. Therefore,
ψ◦φ is a lipschitz embedding which preserves the topological structure ofX. From
Lemma 4.1 and according to the fact that (X, dX , E) is (c, C)-controlled, we have

dHaus(x̃, ỹ) = δE,dX (x, y) = dX(x, y).

Hence, the metrics dHaus, δE,dX and dX are equivalent.

Remark 4.2. Under the same assumptions as in Remark 4.1, i.e. If we set X =

G = ⟨S⟩ a group, with S a symmetric subset of G containing the identity element 1G,
N = {g ∈ G : g ∼ 1G} the normal compact subgroup of G and take E = {(g, h) ∈
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G×G | g−1h ∈ S}, then the E-chained metric graph ΓX = (XHaus, EHaus) is attached
to X and weightable on vertices.

We now define a weight-function on the vertex-set of this metric graph.

4.2. A weight-function on the newly constructed metric graph. Let denote by
P(a,x,c,E)(V ΓX), or by P(a,x,c,E)(ΓX) to make simple, the set of elementary ends of
a homotopy class of c-good E-paths in ΓX , joining a given fixed point a to x in X.
Observe that P(a,x,c,E)(ΓX) ⊂ Πa,x(X), the set of homotopy classes of paths joining
point a to x in X. Let

⋃
a,x∈X

Πa,x(X) = Π(X), the set of homotopy classes of X.

For an arbitrarily fixed point a ∈ X, the results that we present in the following
generalize the analogous results for separable Banach spaces, by taking a = o the
origin of the metric space and replacing the distance dX(a, x) by the standard norm
∥x− a∥ = ∥x− o∥ = ∥x∥, for all x ∈ X.

From now on, one can take point a to be the origin o of the space X and write
P(x,c,E)(ΓX) for an easier perception in separable Banach spaces.

4.2.1. Minimizing the mean discrepancy function. Let Hn ∈ P(a,x,c,E)(ΓX) be a sub-
set of X with n elements defined by:

Hn =

{
h1, . . . , hn ∈ X

∣∣∣∣∣ ∃(h0 = a, h1, . . . , hn = x) ∈ Xn+1 with (hi−1, hi) ∈ E,

δE,dX (hi−1, hi) < c, for i = 1, . . . , n

}
.

This corresponds to the set of the n elementary ends a finite path of n steps
joining a given fixed point a to x in X. It therefore depends on the pair (a, x) ∈
V ΓX×V ΓX . Such a subset ofX, i.e. Hn, is always non-empty and finite, becauseX
is an arc-connected space. It is also a bounded closed set and therefore a compact
of X, as (X, dX , E) is (c, C)-controlled and space X is finitely compact.

Now, let
P(c,E)(ΓX) =

⋃
a,x∈X

P(a,x,c,E)(ΓX),

be the set of elementary ends of a class of homotopies of c-good E-paths joining
any two distinct points in V ΓX . We have P(c,E)(ΓX) ⊂ Π(X).

For every element Hn ∈ P(c,E)(ΓX), define a finite partition πHn = {Ωi}i=1,...n of
Borel-measurables subsets of X attached to Hn by

Ω1 =

{
z ∈ X | δE,dX (z, h1) ≤ min

1≤j≤n
δE,dX (z, hj)

}
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and for i = 2, . . . , n,

Ωi =

{
z ∈ X | δE,dX (z, hi) ≤ min

1≤j≤n
δE,dX (z, hj)

}
\ (Ω1 ∪ . . . ∪ Ωi−1).

Working in separable Banach spaces, Cuesta and Matrán [10] considered, for a
given such subset Hn and a random ΓX-variable ξ taking a finite number of values
{h1, . . . , hn} = Hn ⊂ X, the simple function ηHn : X −→ X which, to any element
x = ξ(ω) of X assigns ηHn(x) =

∑n
i=1 hi1Ωi

(x), where 1Ωi
is the usual indicator

function of Ωi. And they looked to minimize the mean discrepancy between x and
ηHn(x). A process that is sometimes called quantization [30].

We emphasize that our strategy is quite similar to that of Cuesta and Matrán
[10]. But, our reasoning relies on tools adapted to the context of NCCCP spaces
equipped with a CC operation.

The astute the reader will notice is that we replace the simple function ηHn used
by Cuesta and Matrán, by considering the function of the same name, defined for
any element x = ξ(ω) of X by

ηHn(x) = [pi, Khi]ni=1 ,

where K is the convexification operator of X, Khi = ξ(Ωi) and pi = 1
n
× 1Ωi

(x).
Note that, for given two partitions πHn and π′

Hn
of X such that πHn is finer than

π′
Hn

, i.e. each part of X belonging to π′
Hn

is included in a part of X belonging to
πHn, we have ξ(ω) = ξ(ω′) for all Ωi ∈ πHn and all ω, ω′ ∈ Ωi. The function ηHn is
therefore well defined on X and ηHn(Ωi) = Khi on Ωi’s.

For any subset Hn ∈ P(c,E)(ΓX), the attached partition πHn defined above allows
to minimize the mean discrepancy between x and ηHn(x), represented by the real
value ϕ ◦ δE,dX (x, ηHn(x)), where ϕ : R+ → R+ is a function of the general form
ϕ(x) = xp with p ∈ {1, 2}. It is worth noticing that the discrepancy between x and
ηHn(x) can arise in a non-convexifiable metric space, i.e. when the convexification
operator K is biaised (and traduced by KX ⊂ X et KX ̸= X).

We now define a weight-function on the set of vertices of our newly constructed
metric graph.

4.2.2. Weight-function on V ΓX . Let ΓX = (XHaus, EHaus) be an E-chained metric
graph attached to X. For all Hn ∈ P(c,E)(ΓX) and any probability measure µ on X,
we define a R+-valued weight-function θΓ , called weight-function attached to ΓX ,
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on P(c,E)(ΓX) by:

θΓ (Hn) =

∫
x∈X

ϕ ◦ δE,dX (x, ηHn(x))dµ(x).

This weight-function is just a special case of loss-function where set A has been
replaced by ηHn(x).

The condition
∫
x∈X ϕ ◦ δE,dX (x, ηHn(x))dµ(x) < ∞, for all Hn ∈ P(c,E)(ΓX) tra-

duces the finiteness property of this weight-function which is also guaranteed by
the following more general condition, for all constant K ≥ 0,∫

x∈X
ϕ (δE,dX (x, ηHn(x)) +K) dµ(x) <∞.

This more general condition is always verified for power functions ϕ(x) = xp with
p ∈ {1, 2}.

The next proposition shows that the weight-function θΓ is totally defined in the
sense of Mosina.

Proposition 4.1. Consider the weight-function θΓ defined above. Then θΓ (Hn) <∞
holds, for all Hn ∈ P(c,E)(ΓX).

Proof. Take Hn ∈ P(c,E)(ΓX). For every x ∈ X, Kx = x holds since all singletons
are convex in X. We can therefore write x = [pi, Kx]ni=1. But, according to the
negative curvature property of space, the non expansiveness property of the metric
and the compatibility property of the convexification operator K of X, we have the
following:

δE,dX (x, ηHn(x)) = δE,dX ([pi, Kx]ni=1, [pi, Khi]ni=1)

≤
∑

i=1...n

piδE,dX (Kx,Khi)

≤
∑

i=1...n

piδE,dX (x, hi)

≤ n−1 × (n(n+1)
2

)c = (n+1)c
2

.

The inequalities ϕ ◦ δE,dX (x, ηHn(x)) ≤ ϕ( (n+1)c
2

) < ∞ hold, for all x ∈ X, since
ϕ is continuous and strictly increasing. Hence, ϕ ◦ δE,dX is bounded and

θΓ (Hn) ≤ ϕ(
(n+ 1)c

2
)µ(X) ≤ ϕ(

(n+ 1)c

2
) <∞

as needed. □
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Moreover, the mean-setHn,0 of order k = n always exists as the function ϕ◦δE,dX
is bounded.

Remark 4.3.

(i) The graph ΓX = (XHaus, EHaus, θΓ ) as constructed above is a VWM graph of
X.

(ii) The weight-function θΓ depends on the set Hn and the probability measure µ.
So we can either write θΓ (Hn, µ).

With this notation, if E = {H ⊂ X | |H| ≤ ∞} is the set of finite subsets of
X, and for all n ≥ 1, En = {H ⊂ X : |H| ≤ n} the set of parts of X having
at most n elements, then we define the real

θΓ,n(µ) = inf
H∈En

θΓ (H,µ),

called n-variance or variance of order k = n of µ.
(iii) In the case when X = R and ϕ(x) = x2, the real θΓ,1(µ) is just the classic

variance of µ. And since ϕ ◦ δE,dX is bounded, we have ϕ(∞) <∞.
This condition allows to have the decreaseness property of the finite se-

quence of weight-functions θΓ,ℓ(µ), for ℓ = 1, . . . , n, i.e.

θΓ,n(µ) < θΓ,n−1(µ) < . . . < θΓ,1(µ) < ϕ(∞).

A situation that remains valid as soon as θΓ,n−1(µ) > 0 (see, e.g., [24]). If
P(c,E)(ΓX) ⊂ En then the previous inequalities obtained in En remain valid in
P(c,E)(ΓX).

As our strategy is to define and use meaningful metric tools compatible with CC
operation properties. For a random X-variable taking a finite number of values,
we built a framework that allows to compute the moving average of order n. After,
we look at how to convexify this average-object, i.e. to transform it into a convex
objet, by using an appropriate function we called convexification function.

4.3. Convexification function. Let (X, dX) be a NCCCP space. Write Xn, the
direct product of n copies of X and Probn the set of probability measures on
{1, 2, . . . , n} which counts exactly n elements, equipped with the norm ∥µ− ν∥ =∑
i=1,...n

|µ(i)− ν(i)| of ℓ1 space.
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Definition 4.2. The convexification function of X with n X-valued entries attached
to a measure µ ∈ Probn is defined to be the continuous function Ψµ : Xn −→ X by

Ψµ(x1, . . . , xn) = [µ(i),Kxi]ni=1 ,

where µ ∈ Probn and µ(i) = pi for i = 1, . . . n.

This function is well defined since the space X is complete and negatively
curved. The single output element in X represents the convex combination of
at most n different values âĂŃâĂŃreceived in input.

One question to be ask and which the answer depends on the properties of Ψµ

is: " do this single output element (i.e. the convex mean) share the same proper-
ties with the input elements ? "

Some general properties of the convexification function Ψµ. Notice that the
function Ψµ acts as a projection of the CC operation [0, 1]n × Xn −→ X on the
cartesian space Xn. For its n arguments, Ψµ shares the same topological, metric
and algebraic properties on [0, 1]n × Xn with the convex combination on X, in
the same way as if X was a convex subset of a bounded ball in a normed vector
space [6].

Proposition 4.2. If there exists a function Ψµ attached to a metric space X such that

Ψµ(x1, · · · , xn) = K[µ(i), xi]
n
i=1,

then the space X is convexifiable.

Proof. Let suppose there exists a function Ψµ attached to the metric space X such
that Ψµ(x1, · · · , xn) = K[µ(i), xi]

n
i=1. For all x ∈ X, the invariance Kx = x holds

since every singleton X is convex. We therefore have

x = [pi, Kx]ni=1 = K[pi, x]
n
i=1 = Ψµ(x, · · · , x) ∈ K(X).

Therefore X ⊆ K(X). Hence X = K(X) and X is convexifiable. □

One therefore says that the metric space X equipped with a convexification
function Ψµ has a convex-like structure. Thuan [37] used this notion of convex-
like structure to show that any complete (and if separable) metric space endowed
with a CC operation can be embeded in a Banach (and also separable) space. More
informations on the notion of convex-like metric structure are available in [6,7].
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Proposition 4.3. Let X be a convexifiable space. For µ0 a uniform distribution
defined by µ0(i) =

1
n
, the mapping Ψµ0 is a surjection.

Proof. Indeed, for all x ∈ X, we have x =
[
1
n
, x
]n
i=1

= Ψµ0 ({x}ni=1). □

Remark 4.4. The convexification operator K and the convexification function Ψ of
X are two concepts that differ at the levels of their arguments and their values.

The next proposition shows a link between these two concepts.

Proposition 4.4. Let (X, dX) be a NCCCP space and K the convexification oper-
ator of X. If Ψµ0 is the convexification function of X wth n entries attached to
µ0 (i.e. the uniform distribution over the set {1, . . . , n}), then for all x ∈ X,
Kx = lim

n→∞
(Ψµ0{(x)ni=1}).

Proof. Let x ∈ X, we have x =
[
1
n
, x
]n
i=1

= Ψµ0{(x)ni=1}. By definition of the
operator K, we have

Kx = lim
n→∞

([
1

n
, x]ni=1) = lim

n→∞
(Ψµ0{(x)ni=1}).

□

With the tools gathered in subsection 3.2, we can now construct in the frame-
work of Mean-set probability theory an expectation operator E satisfying the law
of large numbers for NCCCP spaces.

4.4. Weighted mean-set (expectation) for NCCCP spaces. Let (X, dX) be a NC-
CCP (pseudo)metric space. Assume the space is E-chained with the set E ⊂ X×X
symmetric containing the diagonal diag(X). Also assume that X is finitely com-
pact, arc connected and the CC operation is unbiased.

Let c, C ∈ R⋆
+ such that (X, dX , E) is (c, C)-controlled, n ≥ 1 and let ΓX =

(XHaus, EHaus, θΓ ) the E-chained VWM graph attached to X. As Hn = {h1, . . . , hn}
represents the general term of the consecutive observations sets sequence neces-
sary for the computation of the n-mean of a random variable ξ with distribution µ,
it is on such set-elements that weight-function θΓ takes its arguments and reaches
its global minimum.

The moving average of order n of a random variable ξ is defined to be a set
Hn,0 = {h01, . . . , h0n} of elementary ends of homotopy classes of c-good E-paths in
X, which minimizes weight-function θΓ on P(c,E)(ΓX) [10,24,30].
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Write,
Hn,0 = arg min

Hn∈P(c,E)(ΓX)
θΓ (Hn).

The mean-set Hn,0 of order k = n always exists as the function ϕ ◦ δE,dX is
bounded. This finite subset of n elements is compact and therefore non empty
since ϕ is continuous on R+ and infinimas of δE,dX are reached only on P(c,E)(ΓX).
In general, this set is not necessarily reduced to a singleton, except in the case
when the metric space X is strictly convex or negatively curved [13,14,21,22].

4.4.1. Weighted mean-set (expectation) of a random V ΓX-variable. Let (X, dX) be
a NCCCP space and ΓX = (XHaus, EHaus, θΓ ) a E-chained VWM graph attached to
X. Let ξ be a random variable taking a finite number of values h01, . . . , h

0
n, with

probabilities p1, . . . , pn respectively, such that Hn,0 = {h01, . . . , h0n} is the limit set
of minimizers Hn,ℓ of weight-function θΓ on P(c,E)(ΓX), when ℓ→ ∞.

Definition 4.3. The weighted mean-set (expectation) or mean-set (to make short) of
ξ, denoted by Ecξ, is the set

Ecξ = Ψµξ(Hn,0) =
[
pi, Kh0i

]n
i=1

,

where Ψµξ is the convexification function attached to µξ and K the convexification
operator of X.

Remark 4.5. The set Ecξ is well defined, thank to the uniqueness of the limit set Hn,0.
Under the same assumptions as in Remarks 4.1 and 4.2, this definition generalizes,
in the discrete case, the concept of mean-set (expectation) according to Mosina.

The next proposition shows that this mathematical expectation for a random
variable with values âĂŃâĂŃin a NCCCP metric space X always belongs to the
convexifiable domain of X.

Proposition 4.5. Given a weighted mean-set Ecξ as previously defined in 4.3, then
Ecξ ∈ K(X).

Proof. Let Ecξ as defined previously. Using linearity property of K, we have

Ecξ =
[
pi, Kh0i

]n
i=1

= K
[
pi, h

0
i

]
∈ K(X).

□



166 C. Fotso, D.E. Houpa Danga, and D. Tieudjo

Possible generalizations of Ecξ: Let κ ∈ N \ {0} and Ψµ be the convexification
function with n X-valued entries of X attached to µ. By analogy with the weight-
function θΓ , we define a weight-function of class κ on P(c,E)(ΓX) by:

θκΓ (Hn) =

∫
x∈X

ϕκ ◦ δE,dX (x, ηHn(x))dµ(x),

for all Hn ∈ P(c,E)(ΓX). And the mean-set Eκc ξ of order κ by

Eκc ξ = Ψµξ

(
arg min

Hn∈P(c,E)(ΓX)
θκΓ (Hn)

)
.

It is obvious that the properties of the weight-function θΓ and the set Ecξ also
hold respectively for θκΓ and Eκc ξ.

4.4.2. Two numerical examples of mean-sets computation.

- When the metric space X = [0, 1]. In this example, we consider n = 2, c = 1 and
set E = [0, 1]× [0, 1]. We are interested by 1-good E-paths of n = 2 steps in X. Let
ξ be a random variable with the uniform distribution µξ(x) = 1

2
on the bounded

and closed interval X = [0, 1] of R, equipped with the real distance induced by the
usual metric, d[0,1](x, y) = |x− y| on R. Also consider ϕ(x) = x2 as the discrepancy
function.

To calculate the mean-set Ec=1ξ, we start by checking the pair of reals H2,0 =

{a, b} that minimizes the weight-function θΓ , hereby defined as a cluster sum of
squares by:

θΓ (H2,0) = θΓ (a, b) =
1

2

∫ 1

0

min
{
|x− a|2, |x− b|2

}
dx.

Suppose 0 ≤ a ≤ b and consider as a partition of [0, 1], the two disjoint intervals
Ω1 = [0, 1

2
(a+ b)[ and Ω2 = [1

2
(a+ b), 1].

The explicite form of θΓ comes out after the following transformations:

θΓ (a, b) = 1
2

∫
Ω1

min {|x− a|2, |x− b|2} dx+ 1
2

∫
Ω2

min {|x− a|2, |x− b|2} dx
= 1

2

∫
Ω1
|x− a|2dx+ 1

2

∫
Ω2
|x− b|2dx

= 1
2

[
1
3
(x− a)3

] 1
2
(a+b)

0
+ 1

2

[
1
3
(x− b)3

]1
1
2
(a+b)

= 1
6
(a3 + (1− b)3 + 1

4
(b− a)3).
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A Critical point of θΓ is every point (a, b) solution of the following partial deriva-
tives equations system:

∂θΓ
∂a

(a, b) = 1
8
[4a2 − (b− a)2] = 0

∂θΓ
∂b

(a, b) = 1
8
[−4(1− b)2 + (b− a)2] = 0

This optimization problem has as unique solution, the point (a = 1
4
, b = 3

4
) at

which the value of θΓ is 1
96

. The Hessian matrix of θΓ at (a, b) gives

HθΓ (a, b) =

(
a+ 1

4
(b− a) 1

4
(a− b)

1
4
(a− b) 1− b+ 1

4
(a− b)

)
.

At the point (1
4
, 3
4
), The Hessian matrix is HθΓ (

1
4
, 3
4
) =

(
3
8

−1
8

−1
8

3
8

)
. The calcu-

lations give detHθΓ (
1
4
, 3
4
) = 1

8
> 0 and trHθΓ (

1
4
, 3
4
) = 3

4
> 0. Hence, the point (1

4
, 3
4
)

is the minimum of θΓ .
Therefore, the pair H2,0 = {1

4
, 3
4
} is the unique minimizer of θΓ . This subset is

actually the "2-mean" of the random variable ξ.
Moreover, the uniform distribution of ξ on X allows us to consider the probabil-

ity values p(Ωi) = pi =
1
2
, for i ∈ {1, 2}. If Ψξ is the convexification function and K

the convexification operator of X = [0, 1], then the mean-set of ξ is defined to be
the set:

E1ξ = Ψξ(H2,0) =

[
1

2
,K{1

4
}; 1

2
,K{3

4
}
]
.

From the fact that R is a separable and strictly convex Banach space, hence nega-
tively curved [13, 14], we can conclude that its subset X = [0, 1] is convexifiable,
hence invariant for the convexification operator K.

Therefore,

E1ξ =

[
1

2
,
1

4
;
1

2
,
3

4

]
= {1

2
}.

Hence, the weighted mean-set is reduced to the singleton of element-set 1
2

which
is the ordinary classic theoretical mean of a uniform distribution over [0, 1].

This result shows that our definition of the weighted mean-set (expectation) is
coherent with the analogous notion of the classic mean (average) of a Bochner-
integrable random variable which, in general, is a singleton in any Banach space
or negatively curved metric space.
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- When the metric space X = R2.
We consider the random R2-variable ξ with distribution µ defined by µ(0, 0) =

µ(0, 3) = µ(3, 0) = 1
3

and for all other points (a, b), µ(a, b) = 0. Equip R2 with the
Euclidean distance d such that

d2(x, y) =
∑
i=1,...2

(xi − yi)
2

and consider ϕ(x) = x2 to be the discrepancy function.
Now considering the distribution on Z2, the weight-function is defined at every

point (a, b) of Z2 by

θΓ (a, b) =
∑

i=1,2,3 ((a− xi)
2 + (b− yi)

2)µ(xi, yi)

= 1
3
(a2 + b2 + (a− 3)2 + b2 + a2 + (b− 3)2)

= 1
3
(2a2 + 2b2 + (a− 3)2 + (b− 3)2) .

After computing the weight of each point of the triple, we find that θΓ (0, 0) = 6

which is less than θΓ (3, 0) = 9 and θΓ (0, 3) = 9. Therefore, the mean-set Ec=1ξ in
Z2 is reduced to the point (0, 0), as Mosina noted in [25] (Remark 3.10).

Coming back on R2, recall that the minimum of θΓ is among the critical point
(a, b) solution of the PDE following system:

∂θΓ
∂a

(a, b) = 1
3
[4a+ 2(a− 3)] = 0

∂θΓ
∂b

(a, b) = 1
3
[4b+ 2(b− 3)] = 0

We find as solution of this system, the unique point (a, b) = (1, 1). The Hessian ma-

trix of θΓ at (a, b) is constant HθΓ (a, b) =

(
2 0

0 2

)
. Hence HθΓ (1, 1) =

(
2 0

0 2

)
.

But, since detHθΓ (1, 1) = 4 > 0 and trHθΓ (1, 1) = 4 > 0. We conclude that (1, 1) is
the minimum of θΓ .

Finally, the unique minimizer (a, b) = (1, 1) of θΓ is naturally the classical mean
defined coordinate-wise in R2 by (EX,EY ) for a given finite set of i.i.d. points
(x1, y1), · · · , (xn, yn).

Moreover, the computation of the weight of this point (1, 1) shows θΓ (1, 1) = 4,
which is smaller than θΓ (0, 0) = 6 and θΓ (3, 0) = θΓ (0, 3) = 9. Therefore, the
mean-set of ξ is reduced to this single element-set (1, 1).
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Remark 4.6. A short verification of this result can be done in two ways. But before
this, let remind that the convex combination operation defined on a metric space X
can be naturally extended (uplifted) to act on subsets A1, · · · , An of X by letting:

[λi, Ai]
n
i=1 or [λi, Ai]i∈{1,...,n} = cl {[λi, ai]ni=1 : ai ∈ Ai, i = 1, · · · , n} ,

where cl in the right-hand side denotes the closure in X (see, e.g., [34] for more
details). Note that taking the closure is necessary, since the Minkowski sum of two
non-compact closed sets is not necessarily closed.

Coming back to our verification, we show the:

- First: Let A = {O(0, 0), A(3, 0), B(0, 3)} be a finite three elements subset of
R2. This can be used to generate R2. By definition, the Convex hull of A, denoted
by H(A), consists of all convex combinations of the generators, i.e. the elements
in A.

When computing in R2 the convex combination of the three points O(0, 0),
A(3, 0) and B(0, 3) of A with parameter 1

3
each, we find that,[

1

3
, O;

1

3
, A;

1

3
, B

]
= {(1, 1)} ,

as expected (see, e.g., [19,20]).

- Second: Using our approach, let endow R2 with the metric induced by the
infinity norm denoted by ∥(x, y)∥∞ = max (|x|, |y|). From the triangle OAB, define
the open balls

Ωi = OAB
⋂

B
(
Mi,

3

2

)
for i ∈ 1, 2, 3, with M1 = O, M2 = A and M3 = B. One can easily show that
(Ωi)i=1,2,3 represent a finite partition of OAB. For a uniform distribution ξ on the
NCCCP metric space R2, consider p(Ωi) = pi = 1

3
, for i ∈ {1, 2, 3}. Let Ψξ be

the convexification function and K the convexification operator of R2. Then the
mean-set of ξ is defined to be the set:

E1ξ = Ψξ(A) =

[
1

3
,K{O}; 1

3
,K{A}; 1

3
,K{B}

]
= {(1, 1)},

as expected.
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This shows that for a distribution on a topological space, the mean-set can
change dramatically according to the nature of the typical underlying space: dis-
crete for Z2 and continue or convex for R2.

We now define the Empirical weighted mean-sets for NCCCP metric spaces with
a CC operation.

4.4.3. Empirical weighted mean-sets for NCCCP spaces. Let Sℓ = (ξi)i=1...ℓ be a finite
sample of ΓX-mutually i.i.d. random variables defined on (Ω,F ,P) and Ψµ the
convexification function of X-valued n entries attached to the measure µ. The
empirical measure attached to this sample is denoted by µℓ and defined on the
borel sets B ∈ B(X) by

µℓ(B) =
1

ℓ
× |{i | ξi(ω) ∈ B, 1 ≤ i ≤ ℓ}|.

We attach to this measure the empirical weight-function, denoted by θΓ,ℓ :

P(c,E)(ΓX) → R+, defined by

θΓ,ℓ(Hn,ℓ) =

∫
x∈X

ϕ ◦ δE,dX (x, ηHn,ℓ
(x))dµℓ(x),

where ϕ : R+ → R+ is a good function (i.e. positive, continuous, strictly increasing
function and such that ϕ(0) = 0).

The empirical moving average of order n of the sample Sℓ = (ξi(ω))i=1,...,ℓ is
defined to be the set, denoted by Hn,0,ℓ = {h0,ℓj | j = 1, . . . , n}, of elements that
minimize the empirical weight-function θΓ,ℓ. That is,

Hn,0,ℓ = arg min
Hn,ℓ∈P(c,E)

θΓ,ℓ(Hn,ℓ).

If the measure µℓ has a probability distribution p
(ℓ)
i , i = 1, . . . , n such that∑

i=1,...n

p
(ℓ)
i = 1 (i.e. if µℓ takes its values h0,ℓ1 , . . . , h0,ℓn on the Ωi’s with respective

probabilities p(ℓ)1 , . . . , p
(ℓ)
n ), then the empirical weighted mean set of the sample,

denoted by Sℓ, is defined to be

Sℓ = Ψµℓ(Hn,0,ℓ) =
[
p
(ℓ)
i , Kh

0,ℓ
i

]n
i=1

.

Remark 4.7. The set Sℓ is not necessarily unique. Therefore arise the problem of
minimization and set convergence of sequences of such subsets (see Subsection 3.3.1).
In fact, it is a rather complex set optimization problem, since it does not obey the
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same existence or uniqueness properties required by the classical limit problem. For
this reason, we can’t study the SLLN with the usual facilities of classical convergence.

Our main results can now be presented.

5. MAIN RESULTS

From now on, (X, dX , [·, ·]) is a E-chained NCCCP (pseudo)metric space with
E ⊂ X × X a symmetric containing the diagonal diag(X). The graph ΓX =

(XHaus, EHaus, θΓX
) is a chained vertex-weighted metric graph attached to X with

θΓX
its attached weight-function defined on P(c,E)(ΓX), and P(c,E)(ΓX) ⊂ En.

5.1. Topological characterization of mean-sets for NCCCP spaces. In the con-
text of topological geometry, the weight of a mean-element can lead to formulate a
characterization of this element as a membership of the mathematical expectation
set. This is based on the fact that, for any z ∈ Eξ and every fixed vertex u ∈ V ΓX ,
the closed ball of minimal radius r = θΓX

(z) centered at u is lies in limsup of the
cocentric closed balls of the same center u but with radius r running in the product
[1, 2]θΓX

(Eξ) of sets [1, 2] and θΓX
(Eξ).

Theorem 5.1. (Topological characterization) Let ξ be a random ΓX-variable with
mean-set Ecξ = Ψξ(Hn,0) = [pi, Kh0i ]ni=1, where Ψξ is the convexification function of
n entries, Hn,0 = {h01, . . . , h0n} is the limit minimizing set of θΓX

and K the convexifi-
cation operator of X. Then, for all fixed u ∈ V ΓX , the implication

(z ∈ Ecξ) =⇒
(
B(u, θΓX

(Ψ−1
ξ (z))) ⊆ lim sup

ℓ→∞
{B(u, (1 +

1

ℓ
)θΓX

(Ψ−1
ξ (z)))}

)
holds, with Ψ−1

ξ (z) = Hnp,0, where (Hnp,0) is a convergent subsequence sets of mini-
mizers (Hn,0) with |Hnp,0| ≤ n.

Proof. From definition 4.3, our mean-set is Ecξ = Ψµξ(Hn,0) = [pi, Kh0i ]ni=1. Let
z ∈ Ecξ, there exists a partition I1 and I2 of {1, . . . , n} such that

z =

[
m1

[
pj
m1

,Kh0j
]
j∈I1

;m2

[
pj
m2

,Kh0j
]
j∈I2

]
,

where mℓ =
∑
i∈Iℓ

λi for ℓ ∈ 1, 2.
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By a good adjustment of variables to make simply, write

z =
[[
αj,Kh0j

]
j∈I1

;
[
αj,Kh0j

]
j∈I2

]
,

with
∑np

j=1 αj = 1, i.e. z = [αi, Kh0i ]
np

i=1. Therefore, z = Ψµ(Hnp,0) for some mea-
sure µ with distribution αi and where (Hnp,0) is a convergent subsequence sets of
minimizers (Hn,0) with |Hnp,0| ≤ n. Thank to Lember’s results on the consistency of
empirical k-centres with respect to Hausdorff topology τ , i.e. "every subsequence
of empirical k-centres has a further subsequence almost surely converging to a
theoretical k-centre" (see [24]).

Now, by fixing a vertex u ∈ V ΓX and setting Aℓ = B(u, rℓ) with

rℓ = (1 +
1

ℓ
)θΓX

(Ψ−1
ξ (z)) ∈ [1, 2]θΓX

(Eξ)

for ℓ ≥ 1, we have that A∞ = B(u, θΓX
(Ψ−1

ξ (z))) and the balls (Aℓ) form a decreas-
ing sets sequence with limit A∞.

Thus, for every L ≥ 1, we have B(u, θΓX
(Ψ−1

ξ (z))) ⊆
⋃
ℓ>L

Aℓ. Therefore,

B(u, θΓX
(Ψ−1

ξ (z))) ⊆
⋂
L≥1

⋃
ℓ>L

Aℓ.

Hence the theorem. □

We now formulate the SLLN (i.e. the almost sure consistency) with respect to
a weighted mean-set for a wider class, i.e. a sample of mutually i.i.d. random
ΓX-variables in a finitely compact NCCCP metric spaces X.

5.2. SLLN for NCCCP spaces. A metric space X is called finitely compact if each
closed and bounded subset of X is compact. A function f : X −→ R ∪ {+∞} is
called convex if f ((1− t)x+ ty) ≤ (1− t)f(x) + tf(y) for all x, y ∈ X

and t ∈ [0; 1].

Theorem 5.2. (SLLN). Let X be a finitely comapct NCCCP space and Sℓ = (ξi)i=1,...ℓ

a sample of random ΓX-variables mutually i.i.d. on (Ω,F ,P), with the same distri-
bution as ξ1. If the space X = Rn or the function ϕ is strictly increasing or convex,
then Sℓ −→ Ecξ1 almost surely, when ℓ→ ∞.

The proof of this theorem is coming after the following remark and lemma
whose proofs remain valid in separable Banach spaces.
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Remark 5.1.

(i) Theorem 5.2 states that, if ℓ is large enough then the empirical mean-set of
the random ΓX-variables mutually i.i.d. coincides with the unique singleton
mean-set. This result remains valid when (X, τ) is a normed topological space
on which the function ϕ is strictly increasing or convex or if xn

τ−→ x and
∥xn∥ −→ ∥x∥ in X then xn −→ x.

(ii) Given a sequence of random X-variables (ξℓ)ℓ≥1 mutually i.i.d with empirical
distributions pℓ(ω, ·) such that Pξℓ = p ∈]0, 1[.

This result on the convergence was also taken up by Cuestra and Matran
[10], in the form

µ({ω | pℓn(ω, ·) −→
ℓ→∞

p}) = 1

with respect to the distance d for almost every ω ∈ Ω.

Lemma 5.1. With the same assumptions as in Theorem 5.2 and under one of the
following four conditions, notably if (X, τ) is normed topological vector space or
X = Rn or ϕ is strictly increasing or ϕ is convex, then Hn,0,ℓ −→

ℓ→∞
Hn,0,1 almost surely.

Proof. Using the same approach as in [10, 24], let (Hn,0,ℓ)ℓ≥1 be a sequence of n
elements subsets of X, where Hn,0,ℓ = {h0,ℓj | j = 1, . . . , n}. By Hahn-Banach theo-
rem, there exists in X⋆, the dual space of X, a continuous sequence (f1, f2, . . . , fn)

of functions such that fi(h
0,ℓ
i ) ̸= fi(h

0,ℓ
j ), for all j ̸= i, with i = 1, . . . , n.

For a good choice of indices in each subset Hn,0,ℓ, take ℓ ≥ 1 and set ℓ(1) the
smallest index i such that

|f1(h0,ℓi )− f1(h
0,1
1 )| ≤ |f1(h0,ℓj )− f1(h

0,1
1 )|

holds, for all j ̸= i. We claim that h0,ℓℓ(1)’s converge (weakly) to h0,11 .

Indeed, let’s proceed by absurdity. Assume that h0,ℓℓ(1) does not converge to h0,11 .
Then, there exist a function f ∈ X⋆, a real ϵ > 0 and a subsequence (Hn,0,ℓp) of
(Hn,0,ℓ) such that, for all ℓp, the following inequality holds

|f(h0,ℓpℓ(1))− f(h0,11 )| > ϵ.

But according to the hypotheses, there exists a subsubsequence (Hn,0,ℓpq) of the
subsequence (Hn,0,ℓp) such that Hn,0,ℓpq −→ Hn,0,1. That is, such that the h0,ℓpq

ℓ′pq(i)
’s

converge to h0,1i , for i = 1, . . . , n.
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But, ℓpq(1) coincides several times with ℓ
′
pq(i), for some indices i. Next, we can

consider a new sub-subsequence, denote in the same way as the previous one,
such that for indices i, the h0,ℓpqℓpq(1)

’s converge to h0,1i .
Furthermore, we obtain

|f1(h0,ℓpqℓpq(1)
)− f1(h

0,1
1 )| ≤ |f1(h0,ℓpqℓ′pq(1)

)− f1(h
0,1
1 )| −→

ℓ→∞
0.

Hence i = 1, according to the condition on the fi’s in X⋆ and their arguments.
Therefore, h0,ℓpqℓpq(1)

’s converges to h0,11 . Which contradicts the hypothesis. So h0,ℓℓ(1)’s
converges to h0,11 .

We now define the integer ℓ(2) as the smallest index i such that

|f2(h0,ℓi )− f2(h
0,1
2 )| ≤ |f2(h0,ℓj )− f2(h

0,1
2 )|

holds, for all j ̸= i.
Proceeding by the same way, we say that h0,ℓpqℓpq(2)

’s converge to h0,12 . Under the
same conditions on fi’s and their arguments, there exists a natural integer L such
that ℓ(2) ̸= ℓ(1), for all ℓ ≥ L.

From now, proceeding step by step, we thus define the sequence of integers
ℓ(1), ℓ(2), . . . , ℓ(n), mutually distinct and whose respective existence implies point-
wise convergence h0,ℓj −→

ℓ→∞
h0,1j , for all j = 1, . . . , n. Therefore, the set convergence

Hn,0,ℓ −→
ℓ→∞

Hn,0,1 is established.

Using the measure probabilistic language, we say

µ

({
ω |

∀(Hn,0,ℓp) ⊂ En, ∃(Hn,0,ℓpq) ⊂ Hn,0,ℓp

such thatHn,0,ℓpq −→
ℓ→∞

Hn,0,1

})
= 1,

for almost every ω ∈ Ω. Hence the Lemma. □

We are now ready to give the proof of the SLLN.

Proof. of Theorem 5.2 (SLLN) The result to be proved can take the form:

Ψµℓ(Hn,0,ℓ) −→
ℓ→∞

Ψµ1(Hn,0,1)

almost surely.
From the definition of function Ψµℓ, this convergence can be expressed in terms

of convex combination convergence by
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[p
(ℓ)
i , Kh

0,ℓ
i ]ni=1 −→

ℓ→∞
[pi, Kh0,1i ]ni=1.

But according to Remark 5.1, p(ℓ)i −→
ℓ→∞

pi and by Lemma 5.1, Hn,0,ℓ −→
ℓ→∞

Hn,0,1.

Therefore, linearity and continuity properties of the CC operation lead to the
conclusion that

P

({
ω |

Every subsequenceΨµℓ(Hn,0,ℓp) ofΨµℓ(Hn,0,ℓ) admits a sub−
subsequenceΨµℓ(Hn,0,ℓpq) such thatΨµℓ(Hn,0,ℓpq) −→ Ψµ1(Hn,0,1)

})
= 1.

Which traduces the almost surely convergence of empirical mean-set to theoretical
mean-set.

Hence the theorem. □

The SLLN is often not directly usable as a probability/statistic tool. Neverthe-
less, it retains all its importance as it guarantees the consistency of estimators.
Indeed, the problem of consistency of an estimator always arises when it is nec-
essary to find conditions under which an empirical parameter can be considered
as an estimator (generally unknown) of a theoretical parameter. The solution of
such a problem is usually found, under certain conditions related to the topology
of the space and the uniqueness of the theoretical parameter, in terms of weak or
strong convergence accordingly.

5.2.1. Consistency of empirical means-sets. The consistency result is moreover jus-
tified by the SLLN we have just established.

Theorem 5.3. (Consistency) Let ΓX = (XHaus, EHaus, θΓ ) be a chained VWM graph
attached to X and Sℓ = (ξi)i=1,...ℓ a sample of random ΓX-variables mutually i.i.d.
on (Ω,F ,P), with the same distribution as ξ1. Let µℓ be an empirical measure con-
structed from a stationary and ergodic sequence of ℓ observations of a µ distribution
on a complete space (Ω,F ,P). If Ecξ1 is a unique singleton, then Sℓ almost surely
converges to Ecξ1.

Proof. In the case in question, the consistency of empirical mean-sets

Sℓ =
[
p
(ℓ)
i , Kh

0,ℓ
i

]n
i=1

as an estimator of the theoretical mean-set

Ecξ1 =
[
pi, Kh0,1i

]n
i=1
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is deduced from the consistency results of the sampled means of order k = n,
available in [24,29,30,35] and thanks to continuity of the convexification function
Ψµℓ of X associated to the distribution µℓ. □

5.3. Chebyshev’s inequality for NCCCP spaces. Given that the mean-set of a
random variable ξ with values in a NCCCP spaceX is always reduced to a singleton
and the variance is finite, one may be interested, as in the classical general real
space, to the boundness of the probability that a value of such a random variable
will differ from the mean-set by more than a fixed real number ϵ.

In the next theorem, we propose and prove an analogue of Chebyshev’s inequal-
ity for a random variable ξ with values in a NCCCP space X.

Theorem 5.4. (Chebyshev’s inequality) Let ΓX = (V ΓX , EΓX , θΓX
) be a chained

VWM graph attached to X and Sℓ = (ξi)i=1,...ℓ a sample of random ΓX-variables mu-
tually i.i.d. on (Ω,F ,P), with the same distribution law as ξ1. If Ecξ1 = Ψµ1(Hn,0,1)

is the mean of ξ1, then for X = Rn or ϕ strictly increasing, there exists a constant
λ = λ(ΓX ,ξ1) > 0 such that P({Sn ̸= Ecξ1}) ≤ n−1λ.

Proof. Let Ecξ1 = Ψµ1(Hn,0,1) = {e} for some e ∈ V ΓX . As we are in the case of a
single mean-set, it suffices to show that

P({∃u ∈ V ΓX \ {e} s.t. θΓX ,ℓ(u) ≤ θΓX ,ℓ(e)}) ≤ ℓ−1λ.

□

6. CONCLUSIVE REMARKS

In this paper, the question of extending the mean-set probabilistic approach to
metric spaces is investigated. Some geometric tools capable of supporting, from
an algebraic point of view, a mathematical basis for computing some probabilities
have been proposed. We focused on finitely compact NCCCP spaces (X, dX) and
considered a metric graph ΓX that we provided with a compatible metric which
extends the classic words distance. We defined a weight-function θΓ on the set
of vertices of this graph which achieves its minimums on P(c,E)(X), the set of the
ends of the c-good E-finite paths in X.

We defined a generalised mean-set Ecξ of a given ΓX-random variable ξ as the
image, by a convexification function Ψµξ of order n of X, of the compact subset
that minimizes the weight-function attached to the measure µξ.
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As results, we generalized several concepts constructed about the expectation
and the SLLN. We observe that:

(i) When n = 1, any one-step path joining two points x and y in space X

is reduced to a usual continuous morphism between the two points. As
the ends of such paths are all reduced to singletons, we find here in the
general context of the definition of classic mean or barycenter in metric
spaces.

(ii) Our definition generalizes that of Terán and Molchanov [34] when the
space is convexifiable and the discrepancy function is ϕ(x) = x.

(iii) In discrete cases, for ϕ(x) = x2 and c = 1, we find out in the context of
Mosina [25].

(iv) Our definition also generalizes the Fréchet’s mean concept [17] and coin-
cide with it after some adjustement when ϕ(x) = x2.

(v) If p = 1 in ϕ(x) = xp, we have an analogue of the median of the distribution
µ and our central parameter of class p is just the classic mean value.

(vi) Our definition naturally generalizes (within one parameter) the notion of
moving average (expectation) of order k = n and E = X ×X.

(vii) In a separable Banach space X equipped with a convex combination op-
eration, by considering the simple function ηHn as we definied (see 4.2.1)
and under the same conditions on the weights λi’s, our approach comes
out with results similar to those of Bator and Ziéba [4] with the metric
combination operation or Terán and Molchanov with the convex combina-
tion operation.

We also characterized mean-sets for random variables and proposed a version
of the strong law of large numbers, for finitely compact NCCCP spaces.

Our approach is open to some applications in cluttered environments that need
to be well checked.
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