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SOME CHARACTERIZATIONS OF TIMELIKE HELICES WITH THE
F-CONSTANT VECTOR FIELD IN MINKOWSKI SPACE E?

Derya Saglam' and Duygu Bada

ABSTRACT. In this paper we give characterizations of timelike normal, rectifying
and osculating helices in Minkowski space E?. Moreover, we examine the charac-
terization of timelike helices whose axis U perpendicular to the F-constant vector
field X, which is a generalization of these helices.

1. INTRODUCTION
We consider Minkowski space F;} endowed with the Lorentzian metric
(,), = —d} + da3 + dx3,

where (z;, 79, 73) is a coordinate system of R3.Let x € E? be given. The vector x
is called spacelike, timelike and lightlike, if (z,2) > 0 or z = 0, (z,z) < 0 and
(x,z) = 0 respectively. The magnitude of a vector x is defined by ||z|| = \/|(z, z)]
[19].

Let o : I C R —F} be a regular curve, i.e. o/(s) # 0. The curve « is called
spacelike, timelike and null, if o/(s) is spacelike, timelike and null(lightlike) for all
s € I, respectively [[19].
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In Minkowski space, o : I C R —FE? is a circle if and only if the curvature is a
non-zero constant and the torsion is zero [12].

Let o : [ — E3 be a non-null unit speed curve, F(s) = {Fi(s), F»(s), F3(s)} be a
moving orthonormal frame at a(s) and {ey, €2, e3} be the natural basis of F Given
a vector field X along the curve «, then
d,

X ==
ds

(X)+ Dp x X,
where %(X ) is the rate of change of X in the moving orthonormal frame F' and
the vector field Dy is the Darboux vector for the frame F. If X' = Dp x X, then
the vector field X is called constant with respect to the frame F' (or F-constant
vector field) [3].

The Frenet frame of the timelike curve o denoted by F' = {7, N, B} is moving
frame and the Darboux vector D for the frame F' is given by

DF:TT—FI{B,

where 7 and « are the torsion and the curvature functions of «, respectively. The
Frenet vector fields are F'-constant vector field. The Frenet equations are given as

(1.1) T = kN
N' = kT +71B
B = —7N
with

K = <T/,N>, - <N’,B>.
Given a vector field X # 0 along the curve a : I — E}, X is called a normal, rec-
tifying and osculating vector field, if the vector X (s) lies in the normal, rectifying
and osculating plane for all s € I, respectively.

A curve « is called cylindrical helix if its tangent vector field 7" makes a constant
angle with a fixed direction and is called slant helix if its principal normal vector
field N makes a constant angle with a fixed direction. Now we define the helix
by taking a F'-constant vector field X instead of the vector fields 7" or N. Also a
curve « is called helix if a F-constant vector field X makes a constant angle with
a fixed direction U. The vector field U is an axis of the helix. « is called normal,
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rectifying and osculating helix, if X is a normal, rectifying and osculating vector
field. Without loss of generality, we will take the vector field X as a unit vector
field and 7 # 0 throughout the article.

In [[3] authors generalized a helix in the three dimensional Euclidean space,
which the curve whose axis perpendicular to the F-constant vector field. In this
paper we give characterizations of the timelike normal, rectifying and osculating
helices in Minkowski space. Moreover, we examine the characterization of timelike
helices whose axis U perpendicular to the F-constant vector field X, which is a
generalization of these helices in F7.

2. NORMAL HELICES

We assume that o : I — E} is a unit timelike curve with its Frenet frame
{T, N, B}, curvature x and non-zero torsion 7. Since « is timelike curve, then T is
timelike, V and B are spacelike vector fields, i.e.

(T,T) = —1,(N,N) = 1,(B,B) = 1.

Let o be a normal helix with an axis U. U is a constant vector field. Since « is a
normal helix, then a unit vector field X is in the plane spanned by NV and B. Thus
we can write

(2.1) X =cos¢pN +sinpB
and X is perpendicular to
(2.2) U= fT+ g(sinpN — cos ¢pB),

where f and g are differentiable functions and ¢ € (—g, f) is a nonzero constant.
By differentiation of (2.2)) and using the Frenet formula (1.1)) we have

(2.3) f'+grsing = 0,
2.4 fe+gsing —grcosp = 0,
(2.5) —g'cos¢p+grsing = 0.

According to (2.5)), we get

(2.6) g =l
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From (2.4) and (2.6)), we have

(27) f — Mpetanqbf'r’
cos ¢

where p = T Substitutiting the equations (2.6) and (2.7) into (2.3), we get the
K
equation

cos 2¢

(2.8) —— (p' + prtan¢) = —ksin ¢,
cos ¢
and then
(2.9) —p' = Mlﬁ + p7 tan ¢.
cos 2¢
Hence we obtain
K cOS 2¢

(2.10) p = —tan¢.

72 cos 2¢ + k2% cos? ¢
Conversely, we assume that o : [ — E? is a unit timelike curve satisfying (2.10)

™ T .
for a nonzero constant ¢ € (—5, 5) and we take the vector field

U= fT+ g(sinpN — cos ¢B),

cos 2¢

where f = — pe @/ 7 and g = et ¢/ 7 Then we get (2.4) and (2.5). More-

over, from (2.10) we have (2.8) and then we obtain (2.3). From (2.3), (2.4) and
(2.5) we get U’ = 0. Also the vector field U is constant. Since the vector field
X = cos N + sin ¢ B is perpendicular to U, then « is a normal helix.

Therefore we get following theorem.

Theorem 2.1. Let o : [ — E} be a unit timelike curve with its non-zero curvature
k and non-gero torsion 7. Then « is a normal helix with an axis U perpendicular to
the vector field X = cos ¢ N + sin ¢ B if and only if
K €OS 2¢
72 cos 2¢ + k2% cos? ¢

pl = —tan (b?

™ T
for a nongero constant ¢ € <—§, 5) :

Now we give the geometric interpretation of normal helices.



SOME CHARACTERIZATIONS OF TIMELIKE HELICES WITH THE F-CONSTANT VECTOR FIELD 267

We assume that « is a normal helix with an axis U and U is perpendicular to
X = cos N +sin ¢ B for a nonconstant ¢ € (—g, g) . X is F'-constant vector field.
We consider a cylinder parametrized by

U(t,y) = a(t) +yU
and denoted by C, ;. The normal vector field of C, 1 is given by
Z =Yy x Yy =T xU = cospN +sin¢pB

and then N makes a constant angle ¢ with Z. Also that is a characterization of the
normal helix.

Let 8 be a unit planar timelike curve with its unit tangent vector 7}, principal
normal vector field N and curvature x4, U be a unit vector field perpendicular to
the plane and Cj ;s be a cylinder parametrized by (¢, y) = 3(t) +yU. Suppose that
the unit normal vector field of C is given by

Z(t,y) = Tp(t) x U = Ny(t)

and

als) = P(i(s),y(s), sel
is unit timelike curve in Cz; such that NV makes a constant angle ¢ with Z. Then
the Frenet vector fields are

T(s) = cosh@(s)Is(t(s))+ sinhé(s)U, (D
(2.11) N(s) = sin¢ (sinh0(s)Ts(t(s)) + coshO(s)U) + cos ¢pZ, (2)
B(s) = —cos¢ (sinh0(s)Tp(t(s)) + coshO(s)U) +sin¢gpZ, (3)

where ¢ : I — R is a differentiable function with #(s) = coshé(s) and y/(s) =
sinh f(s). Then we calculate easily

(2.12) U = sinh 0(s)T'(s) + cosh 0(s)(sin N (s) — cos ¢B(s)).

The F-constant vector field X = cos ¢N +sin ¢ B is perpendicular to U and then
« is a normal helix. Also we get the following theorem.

Theorem 2.2. A unit timelike curve o : I — E3 is a normal helix with an axis U if
and only if « lies on a cylinder and the normal vector field of the cylinder makes a
constant angle ¢ with the principal normal vector field of c.
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If = 0, then the curve a : I — F} is a geodesic of the cylinder. Thus « is a
cylindrical helix. The well-known theorem of Lancret is shown that cylindrical
helices as the geodesics of cylinders. Therefore, Theorem 2.2 is an extension of
Lancret’s theorem.

Let o : I — FE} be a unit timelike curve in a cylinder C. By differentiation of
equations (1) and (2) in and using the Frenet formula (I.1)), since 75 = 0,
we have

K(s)N(s) = 6'(s)(sinh@(s)Ts(t(s)) + cosh@(s)U) + cosh® O(s)rs(t(s)) Na(t(s))
—7(s)N(s) = —0'(s)cos¢ (coshB(s)Ts(t(s)) + sinh§(s)U)
+cosh 0(s)kp(t(s))(sin pTs(t(s)) — cos ¢psinh O(s)Ng(t(s))).

From these equations, we get the following theorem.

Theorem 2.3. Let o : [ — E}, a(s) = ¥(t(s),y(s)) be a unit timelike curve in a
cylinder Cg ;. The normal vector field of the cylinder Cz; makes a constant angle
¢ with the principal normal vector field of « if and only if there is a differentiable
function 6 such that the equations hold

(2.13) t'(s) = cosh#f(s),
(2.14) y'(s) = sinh6(s),
(2.15) 0'(s) = —tangcosh?0(s)ks(t(s)).

In addition, the curvature and torsion of « are the following equations

_ cosh®6(s)
 cos¢

(2.16) K($) kg(t(s)), 7(s)=sinh6(s)coshd(s)ra(t(s)).

Moreover, from the equations (2.16)), we get

T

;(s) = cos ¢ tanh (s).

If the curve £ is a timelike circle of E?, then its curvature is a non-zero constant
and torsion is zero. In addition, since

(tanh 6)'(s) = — tan grg(t(s))
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is constant, the function — is a linear function, and then the curve « is rectifying

KR
curve in E?. Also normal helices lies on circular cylinders are only rectifying curves
in E3.

Example 1. §(t) = (sinh¢,cosht,0) is a planar timelike circle with radius one and
let Cs; be a cylinder parametrized by (t,y) = 5(t) + yU, where U = (0,0, 1).From
Theorem 2.3 and kg = 1, we obtain

0(s) = —arctanh(tan(¢)s),

t(s) = cot@arcsin(tan(¢p)s) + c1,

y(s) = —cotpy/1 — tan?(¢)s? + co,

where ¢, c; and cy are constants. Thus, normal helices in the cylinder Cp s is the
following equation

a(s) = ¥(t(s),y(s)) = (sinhi(s), cosht(s), y(s))
= (sinh(cot ¢ arcsin(tan(¢)s) + ¢ ), cosh(cot ¢ arcsin(tan(¢)s) + ¢1),

—cot g4/ 1 — tan?(¢)s? + ¢).

From the equations (2.16)), we get
sin ¢ cos(¢@)s

cos? ¢ — sin®(¢)s?’

cos @
cos? ¢ — sin?(¢)s?’

(2.17) K(s) = 7(s) =

and then the function

T :

—(s) =sin(¢)s

(5) = sin(9)
is linear function. Also the normal helices are rectifying curves. If we reparametrize
the normal helices with the change of the parameter

tan(¢)s = sin(tan(¢)t),
then
a(t) = (sinh(t + ¢;), cosh(t + ¢;), — cot ¢ cos(tan(p)t) + c2)

and & in(tan(e)t)
m(t):m’ T():m'



270 D. Saglam and D. Bada
3. OSCULATING HELICES

We assume that o : [ — E? is a unit timelike curve with its Frenet frame
{T', N, B}, curvature ~ and non-zero torsion 7. Let o be an osculating helix with
an axis U. Since « is an osculating helix, then a unit vector field X is in the plane
spanned by the timelike vector fieds 7" and the spacelike vector fieds N. The unit
vector field X can be spacelike or timelike. Let’s examine the two cases separately.

Case 1. Let X be spacelike vector field. Thus we can write
(3.1) X =sinh ¢T + cosh ¢ N,
and X is perpendicular to the vector field
(3.2) U = f(cosh ¢T + sinh ¢N) + ¢B,

where f and g are differentiable functions and ¢ € R is a nonzero constant. By
differentiation of (3.2)) and using the Frenet formula (1.1) we have

(3.3) f'coshp + frsinhg = 0,
(3.4) f'sinh¢ + frcoshgp —gr = 0,
(3.5) frsinhg+¢ = 0.

According to (3.3)), we obtain

(36) f _ eftanhgbf/i.
From (3.4) and (3.6)), we have

_ 1 —tanh¢ [k
(3.7) 9= osho :

where p = T Substitutiting the equations (3.6) and (3.7) into (3.5]), we get the
K

equation

. Pk
(3.8) Tsinh ¢ = cosh o (; + ; tanh gb) ,
and then

o = —7tanh ¢ + 7p sinh ¢ cosh ¢.

Hence we obtain
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2

K T\'/
(3.9) m2—7acogf¢><2> — —7tanh¢
or
T K\’
3.10 — ) = tanh ¢.
( ) /@2—7'2005h2¢<7) anh ¢

Conversely, we assume that « : I — E} is a unit timelike curve satisfying (3.10)
for a nonzero constant ¢ € R and we take the vector field

U = f(cosh ¢T + sinh ¢ N) + gB,

where f = e thé[s and ¢ = me*tanhd’f” Then we get (3.3) and (3.4).
Moreover, from (3.10) we have (3.8)) and then we obtain (3.5)). From (3.3)), (3.4)
and (3.5) we get U’ = 0. Also the vector field U is constant. Since the vector field

X = sinh ¢T + cosh ¢ N is perpendicular to U, then « is an osculating helix.

Case 2. Let X be timelike vector field. Thus we can write
X = cosh ¢T" + sinh ¢V,
and X is perpendicular to the vector field
U = f(sinh ¢T + cosh¢N) + ¢B,

where f and g are differentiable functions and ¢ € R is a nonzero constant. Simi-
lar to Case 1, it can be easily shown that

1
_ ,—cotho [x _ ___+  _—coth¢ [k
f=e 9 psinh qbe
and then
T K\’
3.11 (-) — coth ¢.
( ) k2 + 72sinh? ¢ \ T coth ¢

Conversely, we assume that « : I — FE} is a unit timelike curve satisfying
for a nonzero constant ¢ € R and then similar to Case 1, it can be easily shown
that « is an osculating helix.

Therefore we get following theorems.

Theorem 3.1. Let o : I — E? be a unit timelike curve with its non-gero curvature
and non-gero torsion 7. Then « is an osculating helix with an axis U perpendicular
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to the spacelike vector field X = sinh ¢T" + cosh ¢ N if and only if
7 (f) — tanh ¢,

k2 — 12cosh? ¢ \ 7

for a nongero constant ¢ € R.

Theorem 3.2. Let o : I — E? be a unit timelike curve with its non-zero curvature k
and non-gero torsion 7. Then « is an osculating helix with an axis U perpendicular
to the timelike vector field X = cosh ¢T 4 sinh ¢ N if and only if
T AN
— ] = coth ¢,
K2 + 72sinh? ¢ (7) ¢

for a nongero constant ¢ € R.

4. RECTIFYING HELICES

We assume that « : [ — E? is a unit timelike curve with its Frenet frame
{T, N, B}, curvature « and non-zero torsion 7. Let « be a rectifying helix with
an axis U. Since « is a rectifying helix, then a unit vector field X is in the plane
spanned by the timelike vector fieds 7" and the spacelike vector fieds B. The unit
vector field X can be spacelike or timelike. Let’s examine the two cases separately.

Case 1. Let X be spacelike vector field. Thus we can write
X =sinh ¢T" + cosh ¢ B,
and X is perpendicular to the vector field
4.1) U = f(cosh ¢T + sinh ¢B) + gN,

where f and ¢ are differentiable functions and ¢ € R is a nonzero constant. By
differentiation of (4.1) and using the Frenet formula (1.1)) we have

flcoshgp+gr = 0,
frcoshg — frsinhg+¢g = 0,
f'sinh¢p+g7 = 0.
According to the equations, we obtain

-
— = tanh ¢ = constant,
K



SOME CHARACTERIZATIONS OF TIMELIKE HELICES WITH THE F-CONSTANT VECTOR FIELD 273

and then the curve o : I — FE} is a cylindrical helix. Cylindrical helices are
rectifying helices.

Case 2. Let X be timelike vector field. Thus we can write
X = cosh ¢T" + sinh ¢ B,
and X is perpendicular to the vector field
U = f(sinh ¢T + cosh ¢B) + gN,

where f and g are differentiable functions and ¢ € R is a nonzero constant. Simi-
lar to Case 1, it can be easily shown that
T coth ¢ = constant,
K
and then the curve o : I — E? is a cylindrical helix. Cylindrical helices are
rectifying helices.
Therefore we get the following theorem.

Theorem 4.1. Let « : [ — E} be a unit timelike curve with its non-gero curvature
k and non-gero torsion 7. Then « is a rectifying helix with an axis U perpendicular
to the spacelike (or timelike) vector field X if and only if the curve « is a cylindrical
helix.

5. THE GENERAL CASE

We assume that « : [ — E? is a unit timelike curve with its Frenet frame
{T, N, B}, curvature x and non-zero torsion 7. The unit F-constant vector field X
along « is given by the following equation

(5.1) X =dT +bN + cB

with
1 if X is spacelike
e=(X,X)=—a*+b*+c={ —1 if X is timelike
0 if X is lightlike

and perpendicular to the vector field

(5.2) U= f(cI'+ aB) + g(—cN + bB),
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where f and g are differentiable functions. By differentiation of (5.2) and using
the Frenet formula (1.1)) we have

(5.3) fr=gs =0,
(5.4) cg — fleck —ar)+bgr = 0,
(5.5) fla+4gb—ger = 0.
From and (5.5)), we have

(5.6) g = %(CT — ak),

and from (5.4), we find the following equation
cgler — ak) — bf(ck — at) + b*gr = 0.
Therefore we get

(B> + )1 — ack

(5.7) f=Ag, where \ = b —ar)
From and (5.6), we have the equation
(5.8) bk = bN + \(cT — ak).
Hence, we obtain

cK? ™/
(5.9) N = m <E> .

The number ¢ can be zero or non-zero. Let’s examine the two cases separately.

Case 1. Let ¢ be zero. From (5.9), \' = 0, and then ) is a constant function.
Hence, from (5.7)), we obtain

T _actabe constant
Ko b2+ cE4 Aab ’
and then the curve o : I — E} is a cylindrical helix. Since every cylindrical helix

is a rectifying helix, then « is a rectifying helix.

Case 2. Let ¢ be non-zero. From the equation (5.8)), we obtain
2

EK (A
(5.10) ck (e — ) k2 — (3a® + &) 72| + a7 [(e — 3c?)Kk? + (e + a?)T2?] <E> -

1
b

and this equation can be rewritten as
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T !/

(5.11) ebx” ( ) =ck [(e = &) K? = (3a® + &) 7% a7 [(e = 3¢°)K* + (e + a*)77] .

K
Conversely, we assume that a : [ — E? is a unit timelike curve satisfying (5.11)
for some nonzero constants a, b, c. and we take the non-zero vector field

U= f(cI' +aB)+ g(—cN +bB),

where f and g are given by the equations and (5.6), respectively. And then It
can be easily seen that the equations (5.3), and are satisfied. From the
equations (5.3), and we get U’ = 0. Also the vector field U is constant.
Since the unit F-constant vector field X = a7+ bN + ¢B along « is perpendicular
to U, then « is a helix.

Therefore we get following theorems.

Theorem 5.1. Let « : [ — E3 be a unit timelike curve with its non-gero curvature
k and non-gero torsion 7. Then « is a helix with an axis U perpendicular to the
spacelike or timelike vector field X = aT + bN + ¢B along « if and only if

ebk? (£>/ =ck [(e = F)r* = (3a® +¢) 7] + a7 [(e = 3P)K* + (e + a*)77]
for non-gero number ¢ = —a® + b? + ¢ = £1.

Theorem 5.2. Let o : I — E? be a unit timelike curve with its non-gero curvature
and non-gero torsion 7. Then « is a helix with an axis U perpendicular to the lightlike
vector field X = aT + bN + ¢B (i.e € = 0) if and only if the curve « is a rectifying
helix.

Corollary 5.1. Special cases of the equation (5.11) are as follows

(1) If X =T, then « is a plane curve and reduces to p = 0.

(2) If X = N, then « is a cylindrical helix and reduces to p' = 0.

(3) If X = B, then « is a plane curve and reduces to p = 0.

(4) If X = bN + ¢B, then « is a normal helix and reduces to (2.10).

(5) If X = aT + bN, then « is a osculating helix and reduces to (3.10) or
.

(6) If X = aT + c¢B, then « is a rectifying helix and reduces to p' = 0.

(7) If X = aT + bN + ¢B, then « is a helix and reduces to (5.10).
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Now we give the geometric interpretation of helices for the general case.

Let 5 be a unit planar timelike curve with its unit tangent vector 7, principal
normal vector field Nz and curvature g, U be a unit vector field perpendicular to
the plane and Cjp s be a cylinder parametrized by (¢, y) = 3(t) +yU. Suppose that
the unit normal vector field of C is given by

Z(t,y) = Ts(t) x U = Ng(t)
and
afs) =¥(t(s),y(s)), se€l

is unit timelike curve in Cp such that N makes an angle ¢(s) € (—g, 5) with Z.
Then the Frenet vector fields are

T(s) = cosh@(s)Tp(t(s))+ sinhf(s)U,
N(s) = sing(s) (sinhé(s)Ts(t(s)) + cosh8(s)U) + cos ¢(s)Z,
B(s) = —cos¢(s)(sinh0(s)Ts(t(s)) + cosh@(s)U) + sin¢(s)Z,

where 6 : I — R is a differentiable function with #(s) = cosh(s) and ¢/(s) =
sinh 6(s). Then we calculate easily

(5.12) U = sinh 6(s)T'(s) + cosh 8(s)(sin ¢(s)N(s) — cos ¢(s)B(s)).

Since « is a helix with the F-constant vector field X = a7 + bN + ¢B that is
perpendicular to U and cosh 6(s) # 0 (otherwise, & would be a plane curve) then
we get

(5.13) —atanhf + bsin¢ — ccos¢p =0
Moreover, from ([5.12)), we obtain following equations
(TU) =sinh 6, sin¢(B,U)+ cos¢ (N,U) = 0.

Conversely, suppose that the equation (5.13)) is satisfed, then it can be easily seen
that « is a helix.
Also we get the following theorem.

Theorem 5.3. Let o : [ — E3, a(s) = ¥(t(s),y(s)) be a unit timelike curve with its
non-gero curvature x and non-gero torsion 7. Then the curve « is a helix with its axis
U perpendicular to the unit F-constant vector field X = a1 +bN + ¢B along « if and
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only if a lies in a cylinder C; and satisfies the following equation
—atanh + bsingp — ccos ¢ = 0,

with a,b, c are real constants and the differentiable functions 0 : [ — R, ¢ : [ —
(—g, g) such that the following equations hold

(T,U) =sinh6, sing (B,U) + cos¢ (N,U) = 0.

Corollary 5.2. Let a : [ — E3, a(s) = ¥(t(s),y(s)) be a unit timelike curve in
a cylinder Cs . Then the curve « satisfies , for a nonconstant differentiable
function ¢ : [ — <—g, g) , if and only if the equations hold

t'(s) = -
N Va2 — (bsing — ccos §)?’
(5) = bsin ¢ — ccos ¢
Y Va2 — (bsing — ccos ¢)?’
rp(t(s)) = — G CO; Z::;Sin 9,

In addition, we have the curvature and torsion of « are the following equations

B cosh? (s) B a@'(bcos ¢ + csin @)
wls) = cos ¢ ra(t(s)) = sing(a? — (bsing — ccos ¢)?)’

and
@' ((b* — %) sin 2¢ — 2bc cos 2¢)
2(a? — (bsing — ccos @)?) tan ¢’

7(s) = sinh 6(s) cosh 0(s)rs(t(s)) =

Moreover, from the equations, we get
bsin ¢ — ccos ¢

a

2(5) = cos ¢ tanh 0(s) = cos ¢
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