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A NOVEL METHOD FOR SOLVING FULLY FUZZY SOLID TRANSPORTATIONS
PROBLEMS

Hawa Bado1, Lassina Diabate, Daouda Diawara, and Ladji Kane

ABSTRACT. In this paper, we proposes a new method for solving solid transporta-
tion problem under uncertainty environments. The fully fuzzy solid transportation
problem has been formulated. To reduce the model into crisp equivalent, we have
used existing method for approximation of fuzzy numbers by interval numbers
and its arithmatics. A simplex method and existing method for solving Interval
Linear Programming problems are used for solving solid transportation problem
with fuzzy parameters and decision variables. Furthermore, for illustration, some
numerical examples are used to demonstrate the correctness and usefulness of the
proposed method. The proposed algorithm is flexible, easy and reasonable.

1. INTRDUCTION

Transportation problem is an important network structured linear programming
problem that arises in several contexts and received a great deal of attention in the
literature. Transportation problem can be used for a wide variety of situations such
as production, investment, plant location, inventory control, employment schedul-
ing and many others. A solid transportation problem (STP) is a generalization of
classic transportation problem proposed by Shell [19] in which the constraints are
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defined on three items namely, supply, demand and conveyance. In many indus-
trial problems, a homogeneous product is delivered from an origin to a destination
by means of different modes of transport called conveyances, such as trucks, cargo
flights, goods trains, and ships, etc. Effective algorithms have been developed to
solve the transportation problem when the cost coefficients and the supply and
demand quantities are known exactly. The occurrence of randomness and impre-
cision in the real world is inevitable owing to some unexpected situations. There
are cases that the cost coefficients and the supply and demand quantities of a
transportation problem may be uncertain due to some unmanageable factors. To
deal quantitatively with imprecise information in making decisions, Bellman and
Zadeh [1] and Zadeh [21] introduced the impression of fuzziness.

Bit et al. [2] developed the fuzzy programming model based on Zimmermann
method [23] to solve a multi-objective solid transportation problem. Halay [5]
described a solution procedure of a solid transportation problem based on Modi-
method. Li et al. [15] used a neural network approach to solve a multicriteria solid
transportation problem. Jimenez and Verdegay [8] obtained a solution procedure
for two types of uncertain solid transportation problem in which the considered
data are interval numbers and fuzzy numbers, respectively. Again in [9], Jimenez
and Verdegay developed a parametric approach for solving fuzzy solid transporta-
tion problems by an evolutionary algorithm.

In this paper, we attempt to develop the solving Fully Fuzzy Solid Transporta-
tion Problems involving triangular fuzzy numbers via Interval Linear Programming
problems by converting it to two classical solid transportation Problems. The rest
of the paper is organised as follows. In Section 2, we have reviewed some very
important basic definitions and the arithmetic operations involved in interval and
fuzzy numbers. The model for solid transportation problem with fuzzy parame-
ters and fuzzy variables decisions is presented. In Section 3, we propose a simple
method for solving fully fuzzy solid transportation problems. In Section 4, a nu-
merical illustration is given to clearly understand the applicability of the proposed
method. Advantages of the presented method over the existing methods are dis-
cussed in Section 5. Finally, some conclusions and future scope of the method are
drawn in the Section 6.
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2. MATERIALS AND METHODS

In this section, some basic definitions, arithmetic operations for closed Inter-
vals numbers and of linear programming problems involving interval numbers are
presented [11,16,17].

2.1. Arithmetic Operations on intervals numbers. In this subsection, some arith-
metic operations for two intervals are presented [6,7,18].

2.1.1. Definition of intervals numbers. A interval numbers ā = [ap, aq] is set de-
noted ā = {a ∈ R\ap ≤ a ≤ aq} where ap et aq are respectly, the lower limit and
the upper limit of ā.

If ā = ap = aq = a, then ā = [a, a] = a is a real number (or degenerated interval).
The center of an interval numbers ā is defined by m(ā) = ap+aq

2
. The radius of an

interval of numbers ā is defined by w(ā) = aq−ap

2
.

An interval can also be expressed in terms of its center and its radius

ā = [ap, aq] = ⟨m(ā), w(ā)⟩ = {a ∈ R\m(ā)− w(ā) ≤ a ≤ m(ā) + w(ā)}.

2.1.2. A new interval arithmetic. For any two intervals ā = ⟨m(ā), w(ā)⟩ and b̄ =

⟨m(b̄), w(b̄)⟩, the arithmetic operations on ā et b̄ are defined as:

Addition:

(2.1) ā+ b̄ = [ap + bp, aq + bq] = ⟨m(ā) +m(b̄), w(ā) + w(b̄)⟩

Subtraction:

(2.2) ā− b̄ = [ap − bq, aq − bp] = ⟨m(ā)−m(b̄), w(ā) + w(b̄)⟩

Multiplication:

ā× b̄ = [Min (apbp, apbq, aqbp, aqbq),Max (apbp, apbq, aqbp, aqbq)]

or

(2.3)


⟨m(ā)m(b̄) + w(ā)w(b̄),m(ā)w(b̄) +m(b̄)w(ā)⟩ if ap ≥ 0, bp ≥ 0

⟨m(ā)m(b̄) +m(ā)w(b̄),m(b̄)w(ā) + w(b̄)w(ā)⟩ if ap < 0, bp ≥ 0

⟨m(ā)m(b̄)− w(ā)w(b̄),m(b̄)w(ā)−m(ā)w(b̄)⟩ if aq < 0, bp ≥ 0
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Division:

(2.4)
ā

b̄
= [Min (

ap

bp
,
ap

bq
,
aq

bp
,
aq

bq
),Max (

ap

bp
,
ap

bq
,
aq

bp
,
aq

bq
)]

2.2. A new Arithmetic Operations on fuzzy numbers.

2.2.1. Fuzzy numbers. Let X a classical reference set. A fuzzy subset Ã in the
reference set X is defined by an application: µÃ(x) : X −→ [0, 1]. ‘ The Support
of a fuzzy set Ã, denoted Supp(Ã) is the set of elements of X whose membership
function µÃ(x) is non zero: Supp(Ã) = {x ∈ X/µÃ(x) ̸= 0} .

The kernel of a fuzzy set Ã, denoted Noy(Ã) is a set of elements of X whose
membership function µÃ(x) is equal to 1: Ker(Ã) = {x inX/µÃ(x) = 1} .

The height of a fuzzy set Ã, denoted High(Ã) is the greatest membership degree
of Ã: H(Ã) = SupµÃ(x).

A fuzzy set Ã is said to be normalized if there exists x ∈ X such that µÃ(x) = 1.

A fuzzy set Ã is said to be convex if ∀(x1, x2) ∈ R2 and λ ∈ [0, 1], we have:
µÃ(λx1 + (1− λ)x2) ≥ min{µÃ(x1), µÃ(x2)}.

An α-cut Ãα of Ã is a subset of X of level α, defined by:cutα(Ã) = Ãα = {x ∈ X/

µÃ(x) ≥ α;α ∈ [0, 1]}.
A fuzzy set Ã defined on the set of real numbers R is a fuzzy number if its

membership function µÃ(x) : R −→ [0, 1] has the following properties:

(i) µÃ(x) is convex i.e. µÃ(λx1+(1−λ)x2) ≥ min{µÃ(x1), µÃ(x2)},∀λ ∈ [0, 1]

and ∀x1, x2 ∈ R
(ii) µÃ(x) is normal i.e. there exists x ∈ R such that µÃ(x) =1

(iii) µÃ(x) is piecewise continuous.

In this article we inform readers that we are interested in regular fuzzy numbers,
the most basic of which are triangular fuzzy numbers and trapezoidal fuzzy num-
bers. Regular fuzzy numbers are named according to their order n. We write the
fuzzy numbers of order n as follows:

ã = (a1, a2, a3, . . . , anf ) with a1 ≤ a2 ≤ a3 ≤ ... ≤ an.

2.2.2. Decomposition of fuzzy numbers into intervals numbers. Basically, the con-
cept of decomposition of fuzzy numbers follows from the decomposition theorem
as formulated for regular fuzzy numbers, in a dimension of fuzzy subsets in [22].
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He states that any fuzzy set Ã can only be represented by the sequence of its
associates an alpha cut by the formula: µÃ(x) = Sup α.µÃα

(x), α ∈ [0, 1].

To the same extent, this theorem is valid for any fuzzy number as a special case
of a fuzzy set and can be rewritten in the form: µã(x) = Sup α.µãα(x), α ∈ [0, 1].

To make this decomposition theorem usable for practical applications, we make
a discretization of the function membership µã by subdividing the interval [0, 1] in
intervals of length m. The discrete values are then given by: µk =

k
m
, k = 0, · · · ,m.

Thus the application of the decomposition theorem to a fuzzy number of order
n ã = (a1, a2, · · · , an) allows it to be rewritten in its decomposed form by the set

ã = (X(nI−1), X(nI−2), · · · , X1, X0)

of nI intervals.
Here:

nI =
n+1
2
, if n is odd and nI =

n
2
, if n is even,

and

Xk = [ap, aq] = coupeµk
(ã),

with µk =
k

nI−1
, p = 1 + k, q = n− k, k = 0, · · · , nI − 1.

2.2.3. A new fuzzy number arithmetic. Let ã and b̃ two fuzzy numbers. Based
on the concept of the decomposition of fuzzy numbers, the arithmetic operations
between these two fuzzy numbers are defined by:

ã ∗ b̃ = cutα(ã) ∗ cutα(b̃) = ([ap, aq] ∗ [bp, bq]).

Here ∗ refers to (+,−,×,÷) the usual arithmetic operations between two intervals
of classical numbers.

2.3. Formulation of transportation problem with the interval numbers pa-
rameters. In this subsection, a solution procedure for solving the transportation
problems involving interval numbers is developed in the following steps [12–14]
We consider the transportation problem involving interval numbers as follows
( [4]):
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(2.5)



Z̄pq(x̄pq) ≈
m∑
i=1

n∑
j=1

c̄pqij x̄
pq
ij −→ Min

subject to the constraints:
n∑

j=1

x̄pq
ij ≈ āpqi , for i = 1, 2, · · · ,m

m∑
i=1

x̄pq
ij ≈ b̄pqj , for j = 1, 2, · · · , n

Applying the property et a new arithmetic of intervals numbers the problem (2.5)
is equivalent to the following problem:

(2.6)



Z̄pq(x̄pq) ≈
m∑
i=1

n∑
j=1

⟨m(c̄pqij x̄
pq
ij ), w(c̄

pq
ij x̄

pq
ij )⟩ −→ Min

subject to constraints
n∑

j=1

⟨m(x̄pq
ij ), w(x̄

pq
ij )⟩ ≈ ⟨m(āpqi ), w(āpqi )⟩ for i = 1, 2, · · · ,m

m∑
i=1

⟨m(x̄pq
ij ), w(x̄

pq
ij )⟩ ≈ ⟨m(b̄pqj ), w(b̄pqj )⟩ for j = 1, 2, · · · , n.

Note that:

(i)
n∑

j=1

x̄pq
ij = āpqi if and only if

n∑
j=1

w(x̄pq
ij ) = w(āpqi ), for i = 1, 2, · · · ,m.

(ii)
n∑

j=1

x̄pq
ij ̸= āpqi if and only if

n∑
j=1

w(x̄pq
ij ) ̸= w(āpqi ), for i = 1, 2, · · · ,m.

(iii)
m∑
i=1

x̄pq
ij = b̄pqj if and only if

m∑
i=1

w(x̄pq
ij ) = w(b̄pqj ), for j = 1, 2, · · · , n.

(iv)
m∑
i=1

x̄pq
ij ̸= b̄pqj if and only if

m∑
i=1

w(x̄pq
ij ) ̸= w(b̄pqj ), for j = 1, 2, · · · , n.

Therefore the problem (2.6) is decomposed into two problems:
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(2.7)



m(Z̄pq(x̄pq)) =
m∑
i=1

n∑
j=1

m(c̄pqij x̄
pq
ij ) −→ Min

subject to the constraints:
n∑

j=1

m(x̄pq
ij )) = m(āpqi ), for i = 1, · · · ,m

m∑
i=1

m(x̄pq
ij ) = m(b̄pqj ), for j = 1, · · · , n

having m(x̄pq
ij ) as optimal solution, and

(2.8)



w(Z̄pq(x̄pq)) =
m∑
i=1

n∑
j=1

w(c̄pqij x̄
pq
ij ) −→ Min

subject to the constraints:
n∑

j=1

w(x̄pq
ij ) = w(āpqi ), for i = 1, · · · ,m

m∑
i=1

w(x̄pq
ij ) = w(b̄pqj ), for j = 1, · · · , n.

having w(x̄pq
ij ) as optimal solution.

The interval optimal solution of the (2.5) according to the choice of the decision
maker with minimum uncertainty is: x̄pq

ij = [m(x̄pq
ij )−w(x̄pq

ij ),m(x̄pq
ij )+w(x̄pq

ij )] with
the condition w(x̄pq

ik ) ≥ w(x̄pq
il )] if cqik ≤ cqil for j = 1, 2, · · · ,m.

2.4. Formulation of fully fuzzy solid transportation problems. The following
notations are used in the formulation of the fully fuzzy solid transportation model:

- m: total number of sources,
- n: total number of destinations,
- r: total number of conveyances
- ãi: fuzzy amount of the product available at the source i,
- b̃j: fuzzy demand of the product of the destination j,
- ẽk: fuzzy transportation maximal capacity of conveyance k,
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- c̃ijk: fuzzy unit cost of transportation from source i to destination j by
conveyance k, and

- x̃ijk: fuzzy amount of product transported from source i to destination j

by conveyance k

(2.9)



Z̃(x̃) ≈
m∑
i=1

n∑
j=1

r∑
k=1

(c̃ijk.x̃ijk) −→ Min

Subject to constraints:
n∑

j=1

r∑
k=1

x̃ijk ≈ ãi, for i = 1, 2, · · · ,m

m∑
i=1

r∑
k=1

x̃ijk ≈ b̃j, for j = 1, 2, · · · , n
m∑
i=1

n∑
j=1

x̃ijk ≈ ẽk, for k = 1, 2, · · · , r.

3. MAIN RESULTS

In this section, we will describe our method for solving fully fuzzy solid trans-
portation problem to overcome the shortcomings of the existing method. The
algorithm for solving fully fuzzy solid transport problems with fuzzy parameters
and decision variables is composed of the following steps:

Step1. Formulate the fully fuzzy solid transportation problem, and then convert it
into a balanced one if it is not.

Step2. Convert the problem constructed in Step1. into corresponding fully inter-
val problems based on interval decomposition of the fuzzy number according to its
type, and then into equivalent classical solid transport problems based on interval
arithmetic.

Step3. Solve the classic solid transport problems found in Step2. by the simplex
method.

Step4. Determine w(x̄pq
ijk) for each means of transport 1 ≤ k ≤ r fixed according

to the following cases:
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Case 1. If
m∑
i=1

n∑
j=1

|xpq
ijk−x

(p+1)(q−1)
ijk |+w(ē

(p+1)(q−1)
k ) ≤ w(ēpqk ) then

∑
xpq
ijk ̸=0

w(x̄pq
ijk) =

w(ēpqk ) with x̄pq
ijk =

[
xp
ijk, x

q
ijk

]
=

[
xpq
ijk − w(x̄pq

ijk), x
pq
ijk + w(x̄pq

ijk)
]
.

Case 2. If
m∑
i=1

n∑
j=1

|xpq
ijk−x

(p+1)(q−1)
ijk |+w(ē

(p+1)(q−1)
k ) > w(ēpqk ), then w(ēpqk ) = |xpq

ijk−

x
(p+1)(q−1)
ijk |+ w(ē

(p+1)(q−1)
k ) with x̄pq

ijk =
[
xp
ijk, x

q
ij

]
=

[
xpq
ijk − w(x̄pq

ijk), x
pq
ijk + w(x̄pq

ijk)
]
.

Step5. The current fuzzy optimal solution according to the choice of the decision
maker is in Step4. is x̃

3.1. Our method for Solving Fully Fuzzy Solid Transportation (FFSTP) prob-
lems with triangular fuzzy numbers. In this section, a method to find a fuzzy
optimal solution of fully fuzzy solid transportation(FFSTP) problems involving tri-
angular fuzzy numbers is presented.

(3.1)



Z̃(x̃) ≈
m∑
i=1

n∑
j=1

r∑
k=1

(c1ijk, c
2
ijk, c

3
ijk)(x

1
ijk, x

2
ijk, x

3
ijk) −→ Min

Subject to be constraints:
n∑

j=1

r∑
k=1

(x1
ijk, x

2
ijk, x

3
ijk) ≈ (a1i , a

2
i , a

3
i ), for i = 1, 2, · · · ,m

m∑
i=1

r∑
k=1

(x1
ijk, x

2
ijk, x

3
ijk) ≈ (b1j , b

2
j , b

3
j), for j = 1, 2, · · · , n

v
m∑
i=1

n∑
j=1

(x1
ijk, x

2
ijk, x

3
ijk) ≈ (e1k, e

2
k, e

3
k), for k = 1, 2, · · · , r

The steps of our proposed method for solving fully fuzzy solid transportation prob-
lem involving triangular fuzzy numbers as follows:

Step 1. Check the given FFSTP is balanced. If not, change into it.

Step 2. Using the decomposition of fuzzy numbers to interval numbers, the prob-
lem (3.1) is equivalent to:
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(3.2)



Z̃(x̃) ≈
m∑
i=1

n∑
j=1

r∑
k=1

(c2ijk; c̄
13
ijk)(x

2
ijk; x̄

13
ijk) −→ Min

Subject to be constraints:
n∑

j=1

r∑
k=1

(x2
ijk; x̄

13
ijk) ≈ (a2i ; ā

13
i ), for i = 1, 2, · · · ,m

m∑
i=1

r∑
k=1

(x2
ijk; x̄

13
ijk) ≈ (b2j ; b̄

13
j ), for j = 1, 2, · · · , n.

m∑
i=1

n∑
j=1

(x2
ijk; x̄

13
ijk) ≈ (e2k; ē

13
k ), for k = 1, 2, · · · , r.

and the problem (3.2) is decomposed to the two following problems. For p = q =

2, we have:

(3.3)



Z2(x2) =
m∑
i=1

n∑
j=1

r∑
k=1

c2ijkx
2
ijk −→ Min

subject to be constraints:
m∑
j=1

r∑
k=1

x2
ijk = a2i for i = 1, 2; · · · ,m

n∑
i=1

r∑
k=1

x2
ijk = b2j for j = 1, 2; · · · , n

m∑
i=1

n∑
j=1

x2
ijk = e2k for k = 1, 2; · · · , r

For p = 1 and q = 3, we have:

Z̄13(x̄13) ≈
m∑
i=1

n∑
j=1

r∑
k=1

c̄13ijkx̄
13
ijk −→ Min

subject to be constraints:
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(3.4)



n∑
j=1

r∑
k=1

x̄13
ij ≈ ā13i , for i = 1, 2, · · · ,m

m∑
i=1

r∑
k=1

x̄13
ij ≈ b̄13j , for j = 1, 2, · · · , n

m∑
i=1

n∑
j=1

x̄13
ijk ≈ ē13k , for k = 1, 2, · · · , r

.

Using the properties of interval numbers the problem (3.4) is equivalent to the
problem: for p = 1 and q = 3, we have:

(3.5)



Z̄13(x̄13) ≈
m∑
i=1

n∑
j=1

r∑
k=1

m(c̄13ijk)(x̄
13
ijk) −→ Min

subject to be constraints:
n∑

j=1

r∑
k=1

m(x̄13
ij ) ≈ m(ā13i ), for i = 1, 2, · · · ,m

m∑
i=1

r∑
k=1

m(x̄13
ij ) ≈ m(b̄13j ), for j = 1, 2, · · · , n

m∑
i=1

n∑
j=1

m(x̄13
ijk) ≈ m(ē13k ), for k = 1, 2, · · · , r

.

Step 3. Applying the simplex method to determine the optimals solutions of the
problems (3.3) and (3.5).

Step 4.Determine w(x̄13
ijk) for each means of transport 1 ≤ k ≤ r fixed according

to the following cases:

Case 1. If
m∑
i=1

n∑
j=1

|x13
ijk − x2

ijk|+ w(ē2k) ≤ w(ē13k ) then
∑

x13
ijk ̸=0

w(x̄13
ijk) = w(ē13k ) with

x̄13
ijk =

[
x1
ijk, x

3
ijk

]
=

[
x13
ijk − w(x̄13

ijk), x
13
ijk + w(x̄13

ijk)
]
.

Case 2. If
m∑
i=1

n∑
j=1

|x13
ijk − x2

ijk|+ w(ē2k) > w(ē13k ),

then w(ē13k ) = |x13
ijk−x2

ijk|+w(ē2k) with x̄13
ijk =

[
x1
ijk, x

3
ij

]
=

[
x13
ijk − w(x̄13

ijk), x
13
ijk + w(x̄13

ijk)
]
.
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4. NUMERICAL EXAMPLES

Consider the following solid transportation prob+lem:

TABLE 1. Table description

D1 D2 Supply ãi Capacity ẽk

S1 (22, 31, 34) (15,19,29) (150,201,246) (100,200,240)
(20, 29,32) (13, 17, 27)

S2 (30, 39, 54) (8,10, 12) (50, 99, 154) (100, 100, 160)
(28, 37, 52) (6,8, 10)

Demand b̃j (100, 150, 200) (100, 150, 200)
m∑
i=1

ãi =
n∑

j=1

b̃j

Step1.
m∑
i=1

ãi =
m∑
i=1

b̃j =
r∑

k=1

ẽk, the problem is balanced.

Now, using the Step 2 to Step 4 we have the following:

For p = q = 2

Z2(x2) = 31x2
111+29x2

112+19x2
121+17x2

122+39x2
211+37x2

212+10x2
221+8x2

222 −→ Min

Subject to be constraints:

x2
111 + x2

112 + x2
121 + x2

122 = 201

x2
211 + x2

212 + x2
221 + x2

222 = 99

x2
111 + x2

112 + x2
211 + x2

212 = 150

x2
121 + x2

122 + x2
221 + x2

222 = 150

x2
111 + x2

211 + x2
121 + x2

221 = 200

x2
112 + x2

122 + x2
212 + x2

222 = 100

The optimal solution is: x2
111 = 149, x2

112 = 1, x2
121 = 51, x2

122 = 0, x2
211 = 0,

x2
212 = 0, x2

221 = 0 et x2
222 = 99

For p = 1, q = 3:
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Z̄13(x̄13) ≈ [22, 34]x̄13
111 + [20, 32]x̄13

112 + [15, 29]x̄13
121 + [13, 27]x̄13

122 + [30, 54]x̄13
211

+ [28, 52]x̄13
212 + [8, 12]x̄13

221 + [6, 10]x̄13
222

−→ Min

Subject to be constraints:

x̄13
111 + x̄13

112 + x̄13
121 + x̄13

122 = [150, 246]

x̄13
211 + x̄13

212 + x̄13
221 + x̄13

222 = [50, 154]

x̄13
111 + x̄13

112 + x̄13
211 + x̄13

212 = [100, 200]

x̄13
121 + x̄13

122 + x̄13
221 + x̄13

222 = [100, 200]

x̄13
111 + x̄13

211 + x̄13
121 + x̄13

221 = [100, 240]

x̄13
112 + x̄13

122 + x̄13
212 + x̄13

222 = [100, 160].

The optimal solution is: x̄13 = ([87, 157]; [1, 55]; [13, 83]; [0, 0]; [0, 0]; [0, 0]; [0, 0]; [100, 104])

x̄3
111 = [87, 157]

x̄3
112 = [1, 55]

x̄3
121 = [13, 83]

x̄3
122 = [0, 0]

x̄3
211 = [0, 0]

x̄3
212 = [0, 0]

x̄3
221 = [0, 0]

x̄3
222 = [99, 105]

Step5: Depending on the decision maker’s choice, the overall fuzzy optimal
solution to this problem is:

Min Z̃∗ ≈ (3826; [2723, 10555]) = (2723, 3826, 10555)

where
x̃111 = (149; [87, 157]) = (87, 149, 157)

x̃112 = (1; [1, 55]) = (1, 1, 55)

x̃121 = (51; [13, 83]) = (13, 51, 83)
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x̃122 = (0; [0, 0]) = (0, 0, 0))

x̃211 = (0; [0, 0]) = (0, 0, 0)

x̃212 = (0; [0, 0]) = (0, 0, 0)

x̃221 = (0; [0, 0]) = (0, 0, 0)

x̃222 = (99; [99, 105]) = (99, 99, 105)

5. INTERPRETATION OF RESULTS

Our method consists of giving a fuzzy value of the minimum total transport
cost, that is to say a set of values around the exact value of the minimum total
cost. The further we move away from this set, the greater the chance of finding
the exact value of the minimum cost total decreases. Thus our result obtained
being (2723, 3826, 10555) can be interpreted physically as follows:

(i) the lowest of the minimum total transport cost is 2723,
(ii) the safest amount of minimum total transport cost is 3826,

(iii) the highest of the minimum total transportation cost is 10555.

Thus the minimum total transport cost will always be greater than 2723, less than
10555, and the probable value of the minimum total transport cost will be 3826.

6. CONCLUSION

We introduced the notation of primal Fully Fuzzy Solid Transportation Problems
(FFSTP) involving fuzzy numbers. We presented a new method for solving fully
fuzzy single-objective linear solid transport problems in which all parameters and
decision variables are fuzzy numbers. We first formulated the model, wrote the
algorithm for solving said problem. The proposed method made it possible to find
the optimal fuzzy solution to the fully fuzzy and balanced single-objective linear
solid transport problems.
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