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SINGULAR INTEGRAL EQUATIONS FOR A CRACK SUBJECTED NORMAL
STRESS IN A HEATED PLATE

S.K. Zhuang, N.M.A. Nik Long1, K.B. Hamzah, and N. Senu

ABSTRACT. In this paper, a crack in a heated plate is investigated, subjected to
normal stress. Employing the relationship between the uniform and perturbation
fields, as well as complex potential functions and stresses, the problems of heat
conduction and heat stress are modeled as singular integral equations. The deriva-
tives of the crack opening displacement function and the temperature jump func-
tion serve as the unknown functions. Gauss integration rules are applied to solve
the obtained equations numerically. Analysis of the stress intensity factors(SIFs)
for some particular crack configurations is presented.

1. INTRODUCTION

The heated crack phenomenon has a substantial effect on the stability of mate-
rials. This has aroused the interest of academic community in studying the char-
acteristics and behavior of heat cracks. Among the crack problems of interest
are penny-shaped cracks [1,2], cusp-type cracks [3–5], straight cracks [6–9], and
curved cracks [10–14].
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Chen [6] applied the complex potential function method to establish two sets of
Fredholm integral equations for multiple thermally insulated cracks without trac-
tion in an infinite plate. Zhang et al. [7] used the Gauss-Chebyshev numerical
integration method to solve Cauchy singular integral equations for elliptical inclu-
sion and straight cracks in a finite plate. Gross [10] proposed the boundary ele-
ment method for solving the thermal curve crack problem. Chen and Hasebe [11]
constructed the heat conduction problem of a heat curve crack as a new logarith-
mic integral equation, while the heat stress problem with traction-free was estab-
lished using the complex potential method. Hamzah et al. [12, 13] constructed a
new set of hypersingular integral equations to solve the thermally insulated crack
problems in bonded dissimilar materials. Nourazar et al. [14] applied the Fourier
transform method to determine the thermo-mechanical dislocation with unknown
density and solved the piezoelectric plane crack problem by establishing a singu-
lar integral equation. Chen et al. [16] and Savruk et al. [20] have summarized
the establishment and solving methods of equations for many types of cracks and
heated cracks.

In this study, a heated crack problem with stress is formulated by the complex
potential method, which is decomposed into two integral equations involving the
heat conduction problem and the heat stress problem. The obtained equations
are appropriate for addressing heat crack problems subjected to various stresses,
such as shear stress, tearing stress, or other stresses. In these situations, it is often
difficult to get a closed-form solution. However, the numerical solution method
employed in this paper is able to obtain the required results directly with high
precision.

2. HEAT CONDUCTION PROBLEM

The physical field is described as:

φ(z) = φu(z) + φp(z),

where the subscript u is for the uniform field and p is for the perturbation field.
The solution of the uniform field has the following expression:

φu(z) = ϕu(z) + iψu(z) = −qo
κ

(
e−iβz

)
,(2.1)
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FIGURE 1. The curve crack subjected to normal stress in a heated
plate and the length coordinate for curves.

where ϕu(z) denotes the temperature distribution, ψu(z) is the heat stream func-
tion, κ is the heat conductivity, q0 is the remote heat flux, and β is the angle
between q0 and the horizontal direction(see Fig.1).

For the perturbation field, the following complex expression is used:

φp(z) = ϕp(z) + iψp(z) =
1

πi

∫
L

γ(t)

t− z
dt,(2.2)

where γ(t) is the temperature jump function.
Let z approaches t+0 and t−0 , Eq.(2.2) gives [15]

φ±
p (to) = ±γ (to) +

1

πi

∫
L

γ(t)dt

t− to
(to ∈ L) ,(2.3)

where ” + ” and ” − ”, respectively, represent the displacement at point t0 on the
upper and lower crack L(see Fig.1).

Hence, we have

γ (to) =
1

2

(
φ+
p (to)− φ−

p (to)
)

(to ∈ L) .

Since the crack faces is assumed to have a thermal insulation condition, we have

ψp(t) + ψu(t) = 0 or ψu(t) = −ψp(t) (t ∈ L).(2.4)



300 S.K. Zhuang, N.M.A. Nik Long, K.B. Hamzah, and N. Senu

From Eqs.(2.1), (2.3) and (2.4), we have

1

π
Re

∫
L

γ(t)

t− t0
dt =

qo
κ
Re

(
ie−iβt0

)
+ c (t0 ∈ L),(2.5)

where "Re" refers to the real part and c is a constant.

3. HEAT STRESS PROBLEM

The complex potentials X(z), Y (z) and φ(z) are described by the displacements
(ω, v), the stresses (ρx, ρy, ρxy), and the resultant forces (K, J) as follows [16]:

ρx + ρy = 4ReX ′(z)(3.1)

ρy − ρx + 2iρxy = 2 [z̄X ′′(z) + Y ′(z)](3.2)

f = −J + iK = X(z) + zX ′(z) + Y (z)(3.3)

2G1(ω + iv) = λX(z)− zX ′(z)− Y (z) + (1 + λ)σt

∫
φ(z)dz(3.4)

whereG1 is the shear modulus of elasticity. λ = 3−4ν1 and σt = G1(1+ν1)αt/(2(1−
ν1)) are used in the plane strain problem, while λ = (3 − ν1)/(1 + ν1) and σt =

G1(1 + ν1)αt/2 are used in the plane stress problem, αt represents the coefficient
of thermal expansion and ν1 is the Poisson’s ratio.

The complex potential functions are expressed as follows:

X(z) = − 1

2π

∫
L

ln(z − t)H(t)dt

Y (z) =
1

2π

∫
L

(t− z)H(t)dt− 1

2π

∫
L

t̄

t− z
H(t)dt.(3.5)

After differentiating Eqs.(3.3) and (3.4) in a specified direction, we have, re-
spectively,

F1

(
z,
dz̄

dz

)
=

d

dz
{−J + iK}

= X ′(z) +X ′(z) +
dz̄

dz

(
zX ′′(z) + Y ′(z)

)
= N + iT(3.6)

F2

(
z,
dz̄

dz

)
= 2G1

d

dz
{ω + iv}
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= λX ′(z)−X ′(z)− dz̄

dz

(
zX ′′(z) + Y ′(z)

)
+ (1 + λ)σtφ(z)

= (λ+ 1)X ′(z)− F1 + (λ+ 1)σtφ(z)(3.7)

where F1 = N + iT represents the normal and tangential tractions along the small
crack segment z, z + dz (see Fig.1).

For the crack opening displacement function, the following relation is derived
[11]:

G′(t) = − 2G1i

1 + λ

d

dt

[
(ω(t) + iv(t))+ − (ω(t) + iv(t))−

]
= H(t)− 2iσtγ(t) (t ∈ L).(3.8)

Single-valuedness condition of displacement reads∫
L

G′(t)dt = 0 (t ∈ L).(3.9)

Substituting Eq.(3.5) into Eq.(3.6), taking the limit as z approaches t+0 and t−0 ,
and defining t∗ = t− t0, the equation for the heat stress problem is established as
follows:

1

π

∫
L

H (t) dt

t− t0
+

1

2π

∫
L

P1 (t
∗, t0)H (t) dt+

1

2π

∫
L

P2 (t
∗, t0)H (t)dt̄

=N (t0) + iT (t0)(3.10)

where

P1 (t
∗, t0) = − 1

t∗
+

1

t̄∗
dt̄0
dt0

, P2 (t
∗, t0) =

1

t̄∗
− t∗

(t̄∗)2
dt̄0
dt0

.(3.11)

Note that dt in Eqs.(3.9),(3.10) and (3.11) is a small increment, which can be
expressed as follows:

dt = eiθds

where ds stands for a small arc length along the crack L, while θ is an angle formed
between the tangent line and the horizontal direction at point t on the crack L.

Under the condition in Eq.(3.9), substituting Eq.(3.8) into Eq.(3.10), the new
singular integral equation with G′(t) and γ(t) as unknowns is obtained as follows:
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N (t0) + iT (t0) =
1

π

∫
L

G′ (t) dt

t− t0
+

1

2π

∫
L

P1 (t
∗, t0)G

′ (t) dt+
1

2π

∫
L

P2 (t
∗, t0)G′ (t)dt̄

+
iσt
π

∫
L

P3 (t
∗, t0) γ (t) dt+

iσt
π

∫
L

P2 (t
∗, t0) γ (t) dt̄ (t0 ∈ L)(3.12)

where

P3 (t
∗, t0) =

1

t∗
+

1

t̄∗
dt̄0
dt0

.

The unknown temperature jump function γ(t) in Eq.(3.12) can be found from
Eq.(2.5), and combining with Eq.(3.9), the unknown G′(t) can be found.

4. THE LENGTH COORDINATE METHOD FOR CURVES

The curve crack is mapped one-to-one to the real axis using the length coordi-
nate method (see Fig.1). The functions t1(s) and t2(s), based on the dislocation’s
properties, the functions γ(t) and G′(t) can be written in the following forms(Chen
et al. [16]), respectively:

γ(t) |t1(s)=
√
l2 − s2R(s) (|s| < l)

G′(t) |t2(s)=
Q(s)√
l2 − s2

(|s| < l)(4.1)

where Q(s) = Q1(s) + iQ2(s).
By substituting Eq.(4.1) into Eqs.(2.5), (3.9) and (3.12), and defining s∗ =

s− s0, the singular integral equations have the following form, respectively:

1

π
Re

∫ l

−l

P4 (s, so)
R(s)

(s− so)(
√
l2 − s2)

ds =
qo
κ
Re

(
ie−iβs0

)
+ c (|so| < l)(4.2)

and

1

π

∫ l

−l

P5 (s, so)
Q(s)

(s− so)(
√
l2 − s2)

ds+
1

2π

∫ l

−l

E1 (s, so)
Q(s)√
l2 − s2

ds

+
1

2π

∫ l

−l

E2 (s, so)
Q(s)√
l2 − s2

ds+
iσt
π

∫ l

−l

E3 (s, so)
R(s)√
l2 − s2

ds

=N (so) + iT (so) (|so| < l)(4.3)
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where

P4 (s, so) =
√
l2 − s2

s∗

t∗
dt

ds
, P5 (s, so) =

s∗

t∗
dt

ds
, E1 (s, so) = P1 (t

∗, to)
dt

ds
,

E2 (s, so) = P2 (t
∗, to)

dt̄

ds
, E3 (s, so) =

[
P3 (t

∗, to)
dt

ds
+ P2 (t

∗, to)
dt̄

ds

] (
l2 − s2

)
.

From Eq.(3.9), we get∫ l

−l

F (s)Q(s)√
l2 − s2

ds = 0 (where F (s) =
dt

ds
).(4.4)

In solving Eqs.(4.2), (4.3), and (4.4), the following Gauss integration rules are
applied [17,20]:

1

π

∫ l

−l

L1(s)Q(s)ds√
l2 − s2 (s− so,k)

=
1

M

M∑
j=1

L1 (sj)Q (sj)

sj − so,k

1

π

∫ l

−l

L2(s)Q(s)ds√
l2 − s2

=
1

M

M∑
j=1

L2 (sj)Q (sj)(4.5)

where

sj = l cos
(j − 0.5)π

M
(j = 1, 2, . . .M)

so,k = l cos
kπ

M
(k = 1, 2, . . .M − 1)

With the help of integration rules Eq.(4.5), we take the following steps:

(i) convert Eq.(4.2) into a linear system withM unknownsR(sj)(j = 1, 2, . . .M)

and M equations;
(ii) simultaneously, Eqs.(4.3) and (4.4) are also converted into a linear sys-

tem with M unknowns Q(sj)(j = 1, 2, . . .M), M unknowns R(sj) and M

equations;
(iii) obtain the values of R(sj) by solving step (i) of the linear system;
(iv) substitute the values of R(sj) into the linear system in step (ii) to obtain

the value of Q(sj) for M unknowns.

The values of Q(−l) and Q(l) can be obtained by the following formula, respec-
tively [19]:

Q(−l) = 1

M

M∑
j=1

(−1)j+MQ (sj) tan((2j − 1)π/4M)
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and

Q(l) =
1

M

M∑
j=1

(−1)j+1Q (sj) cot((2j − 1)π/4M).

Finally, the SIF at the left(B) and right(C) tips can be determined separately
using the following derived formulas:

(K1 − iK2)B =
√
2π lim

t→tB

√
| t− tB |G′(t) =

√
2π lim

s→−l

√
l + s

Q(s)√
l2 − s2

=

√
π

l
Q(−l),

and

(K1 − iK2)C = −
√
2π lim

t→tC

√
|t− tC |G′(t) = −

√
2π lim

s→−l

√
l − s

Q(s)√
l2 − s2

= −
√
π

l
Q(l).

FIGURE 2. (a) A circular-arc-shaped crack, (b) a quadratic-shaped
crack, (c) a cosine-shaped crack, and (d) a straight-shaped crack.
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5. NUMERICAL EXAMPLES

Numerical examples for four different crack configurations (see Fig. 2) are pre-
sented. In the computation, we have used M = 55, β = π/2, q0 = 1, σt = 0.22,
αt = 0.34, k = 0.34 and the remote traction ρ∞y = p.

5.1. SIFs for a crack in Fig. 2(a). The non-dimensional SIF for the crack in Fig.
2(a) is defined as follows:

K1C = K1B = F1C(θ)p
√
πa

K2C = −K2B = F2C(θ)p
√
πa(5.1)

where a = Rsinθ.
Table 1 showns the non-dimensional SIF for the crack in Fig. 2(a) with and

without heat. It is evidence that our results for crack without heat agree with
the exact solution by Cotterell and Rice [18]. We observe that the Mode I non-
dimensional SIF for a crack in a heated plate is higher than the crack without heat,
whereas the Mode II non-dimensional SIF at tip C is smaller.

TABLE 1. Non-dimensional SIF for crack in Fig. 2(a).

θ (degrees) 10 20 30 40 50 60 70 80
F1C∗ 0.97363 0.89698 0.77793 0.62722 0.45745 0.28149 0.11076 -0.04466

F1Cexact 0.97358 0.89702 0.77790 0.62719 0.45749 0.28146 0.11074 -0.04468
F1Ch 0.99299 0.97043 0.92926 0.86529 0.77553 0.65971 0.52083 0.36576
F2C∗ 0.17235 0.33179 0.46729 0.57033 0.63591 0.66252 0.65111 0.60529

F2Cexact 0.17233 0.33182 0.46726 0.57030 0.63595 0.66250 0.65112 0.60530
F2Ch -0.05069 -0.09791 -0.13961 -0.17650 -0.21192 -0.25144 -0.30205 -0.37027

∗ without heat; -exact solution without heat [18]; −h with heat.

5.2. SIFs for a crack in Fig. 2(b). The non-dimensional SIF for the crack in Fig.
2(b) is defined as follows:

K1C = K1B = F1C(b)p
√
πl

K2C = −K2B = F2C(b)p
√
πl(5.2)

where 2l represents the crack length.
Figure 3 shows the non-dimensional SIF for the crack in Fig. 2(b) with and

without heat at various parameter values, a. The results indicate that: (1) The
Mode I non-dimensional SIF of a heated crack decreases with the continuous crack
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FIGURE 3. Non-dimensional SIF for crack in Fig. 2(b)

expansion, while Mode II non-dimensional SIF at tip C increases first and then
decreases gradually. (2) Given the parameter a, the Mode I non-dimensional SIF
for a crack in a heated plate is higher than the crack without heat, whereas the
Mode II non-dimensional SIF at tip C is smaller.

5.3. SIFs for a crack in Fig. 2(c). The non-dimensional SIF of the crack in Fig.
2(c) is the same as Eq.(5.2).

Figure 4 depicts the relationship between the non-dimensional SIF of the crack
in Fig. 2(c) under different parameter values of a and b with and without heat.
It is found that: (1) When a > 0, the Mode I non-dimensional SIF for a crack in
a heated plate is lower than the crack without heat. This behavior is due to the
fact that the direction of the crack expansion in Fig. 2(c) is opposite to the remote
heat flux, q0. (2) Conversely, when a < 0, the Mode I non-dimensional SIF for a
crack in a heated plate is higher.

5.4. SIFs for a crack in Fig. 2(d). The non-dimensional SIF for the crack in Fig.
2(d) is defined as follows:

K1C = K1B = F1C(θ)p
√
πl

K2B = F2B(θ)p
√
πl, K2C = F2C(θ)p

√
πl(5.3)

Figure 5 shows the non-dimensional SIF for the crack in Fig. 2(d) with and without
heat at various crack lengths, l. It is found that the temperature and crack length
have a small effect on the values of Mode I non-dimensional SIFs; however, Mode
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FIGURE 4. Non-dimensional SIF for crack in Fig. 2(c)

∗ without heat; −h with heat.

FIGURE 5. Non-dimensional SIF for a crack in Fig. 2(d)

II non-dimensional SIFs increases at tip B with crack length and decreases at tip
C.

6. CONCLUSION

In the present work, the crack subjected normal stress in an infinite heated
plate is formulated into two singular integral equations, and solved using Gauss
integration rules. The numerical results exhibit that: (1) If the crack expansion
is in the same direction as the remote heat flux, the Mode I non-dimensional SIF
for a crack in a heated plate is higher than the crack without heat; however, if
the direction is opposite, the Mode I non-dimensional SIF for a crack in a heated
plate is smaller. (2) The non-dimensional SIF of a heated crack is influenced by
the configuration and position of the crack.
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