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EXTENDING CONVERGENCE ANALYSIS OF A LANDWEBER METHOD FOR
SOLVING NONLINEAR ILL-POSED PROBLEMS

Ly Van An

ABSTRACT. In this paper, I use the Landweber iterative method to solve nonlinear
problems. I analyze convergence and estimate error using assumptions such as
the Landweber method is considered a regularization scheme when the iteration is
stopped at the appropriate stage using the bias principle. I use the same difference
principle is used in standard diagrams to stop proposed repeating diagrams.

1. INTRODUCTION

The Landweber iteration or Landweber algorithm is an algorithm to solve ill-
posed linear inverse problems, and it has been extended to solve non-linear prob-
lems that involve constraints. The method was first proposed in the 1950 by Louis
Landweber, and it can be now viewed as a special case of many other more general
methods [|1] . This paper is concerned with operator equations of the form

(1.1) F(z):=y.

In there:

(1) Here we assume that X, Y are real Hilbert spaces.
(2) F:G(F) C X — Y is a nonlinear operator on domain G(F') C X.
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Note: For convenience in this article, the indices of inner products < -,- > and
norms || - || are neglected but they can always be identified from the context in
which they appear. In this situation, actual data may not be available. Instead, I
may have to deal with approximate data ¢ satisfying the condition,

(1.2) Hy -y

where § > 0 O is the given noise level. In such circumstances, I consider the

<5

operator equation
(1.3) F(z) =79.

For ) satisfying (1.2). We assume that has a solution z~. Which experience
is not the only solution that satisfies F'(x*) = y and F’ has a non-invertible, locally
uniformly bounded Fréchet derivative in a ball B, (z) := {az €X:|z—a < r}.
The regularization procedures are usually employed to obtain a stable approxi-
mate solution for problems (1.1 (see [2]). Tikhonov regularization is one of the
widely used regularization schemes for obtaining such a solution (see [3]] [4])in
which the approximate solution, Z, is obtained by minimizing the Tikhonov func-
tional

2 2
(1.4) HF@y—ﬂ‘+qp—xﬂ.

Herein z is an initial guess and { > 0 is the regularization parameter. An al-
ternative approach is to consider the iterative schemes. Gauss—Newton type and
Landweber iterative schemes are widely used in literature [5,6]. The conver-
gence and convergence rate analysis of nonlinear ill-posed problems can be car-
ried out only with stronger assumptions compared to its linear counterpart. How-
ever, one can expect only local convergence rather than a global convergence.
The Gauss-Newton and Landweber iterative scheme studied in literature [7] also
belong to this category. A simplified approach for Gauss-Newton scheme has
been studied in [8]. Our aim is to consider a simplified form of Landweber it-
erative scheme that gives the same convergence result as that of the standard
scheme but with weaker assumptions. In this paper, we prove that the method
converges to the zy-minimum norm solution z~ with the rate of convergence
O(omP/mBAt1) 0 < B < L m > 2 with specific smoothness assumption. For sim-
plicity of analysis, I set H := F'(x(). The standard Landweber iterative method for
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solving (1.3) is
(15) i’k+1 :.@k—f—F/(fik)*(Q—Fl(ik)),k EN,JATO = T,

where F'(z)*, F'(Z;) denote the Fréchet derivative and its adjoint respectively.
In order to establish convergence and convergence rate analysis for (I1.5]), many
assumptions have been used in literature. For the sake of completeness, we recall
them here as follows:

(1.6) lv—d <a
and that F fulfils

(1) F'(x) <1forx € B,(x)

) HF(;):) _F(3) - Fla)(z —3) <7 ‘F(x) - F(@)H, n<izie B (z)

(3) F'(z) = R,F'(z.), x4, @ € B,(x0), Where {R, : © € B,(z0)} is a family of
bounded linear operators R, : Y — Y with || R, — I H < C|lv - =
B..(x0),C > 0,

4) z. —x0= (F'(z.)"F'(2.))"f,0<v < 3, feX.

It is proved that the method achieves the convergence rate of O(5™%/™#1) 0 <

8 < %,m > 2 and the best possible rate attained is O(6'/™) at 3 = 1/m [9]. In
practice, it is very difficult to verify all these assumptions. In many cases, Assump-

, Ty, T €

tions (1) and (2) can be verified. However, Assumptions (3) and (4) are quite
difficult to deal with although it has been verified for a couple of examples [[10].
Keeping this in mind, in this paper, we consider the following simplified form of
Landweber iterative scheme

(1.7) Tpyr = T+ H() — F'(21)),k €N,

where H = F’(zy). I make use of the following assumptions to establish the
convergence of the method and derive the convergence rate.

2. BASIS FOR CONVERGENCE ANALYSIS

In this section, I discuss the convergence of the scheme (1.7) and make use of
the assumption

2.1 |F@) = F) — Ha )| < 0| Fl@) - Fly)

?
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where n < %,z,y € By(z) C QF);H = F'(z) and H < 1, 23] for estab-
lishing the result. We note that one can deduce the following relation from the
assumption (2.1)):
1 1
: — —y)|| < - < "
@2 gl -] < rw - o) < e - )|

The Landweber iteration has the inherent property that the iteration converges
first and then diverges. Therefore in the case of noisy data, for obtaining sta-
ble solution, the iteration has to be stopped after certain steps say, k. = k.(9, 9).
We employ the same stopping rule used in standard Landweber method for this
purpose. As a stopping criteria for our iterative scheme, we use the following
discrepancy principle:

(2.3) §— F(ir,) y— F(Zr.)

\§76§

L 0<k< k.

Some theorems for convergence analysis.

Theorem 2.1. Assume that the equation F'(x) = y has a solution 2™ in B (7o) and
F satisfies the following conditions

2.4 |F@) = P) - @ -y < | F@) - F)

where 1) < 3,2,y € B(x0) C QF);H = F'(xo) and H < 1. If &} € B:(z") a

29
sufficient condition for i, to be a better approximation of x* than iy, is that

. X 20(1+7)
y-F@| =2 55

So, T4 € B%(I+) CB (.To)

r
2

Y

(2.5) 0<Ek <k,

Theorem 2.2. Assume that the equation F'(x) = y has a solution =™ in Bz (x,) and
F satisfies the following conditions

(2.6) |F@) = F) — Ha )| <0 Fl@) - Fly)

where 1) < ,x,y € B.(x0) C UF);H = F'(x), H < 1, and &, € Bs(z") a

27
sufficient condition for x;., to be a better approximation of x* than i, is that

. R 26(1 + )
~F H > 20T
g—F(@)| = o

?

(2.7) 0<k<k,.
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So, Ty € B%(IJ’_) C B%(xo) If

§ = F(an)|| = 7.0 <k < ko Forr > 2022, then

ks

(2.8) k.(70) < ; b= F@’“)HQ = (1—27) i 2(1+7) H‘”O a “"+H2‘
Theorem 2.3. Assume that the assumption

(2.9) |F@) ~ Fy) - B —y)| < 0| F@) - Fo).

Where n < 3,x,y € B,(z) C QF);H = F'(x9) and H < 1 holds and that the

equation F(x) = y is solvable in B,(xq) . Then, the iterative scheme (1.7) with y
replaced by y converges to the solution of F'(x) = y.

Theorem 2.4. Let the assumptions of Theorem 2.3 hold and let the iterative scheme
(1.7) is stopped according to the stopping criteria (2.4). Then the iterates xj, con-
verges to the solution of F'(z) =y as § — 0.

Article layout:
section.3 : preliminaries

subsection.3.1 :Describe the Landweber iterative method for the inverse prob-
lem

subsection.3.2 :Landweber’s Algorithm for the inverse problem

section.4 : convergence analysis In this section, I give two lemmas, Lemma 4.1
and Lemma 4.2, as a basis for convergence analysis.
3. PRELIMINARIES

3.1. Describe the Landweber iterative method for the inverse problem. Let
F=(F,...,Fy1)and y = (yo, ..., yp—1) then the Landweber iteration for solving

(3.1) Fi(z)=y;,j=1,....,p— L
reads as follows

r = 2y — Fj(a) (F () —y°)

(3.2) =a) =Y Fla) (F(a) =y’ ) k=1,.....
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Let B,(xz() be an open ball of radius r containing x..

I/ The conditions A;

(1) F is Frechet differentiable on B,(x)
(2) F'(x) < 1forx € B,(x)
(mHn@—F@yJw@u—@gHﬂ@—F@)

0 < %,2,% € By(z0)
are strong enough to ensure at least local convergence to a solution of

(3.3) Fi(z)=y;,j=1,....,p— L

II/ The conditions A;;
If y° does not belong to the range of F , then the iterates x% of cannot
converge but still allow a stable approximation of z, provided the iteration is
stopped after k, = k? steps acording to the generalized discrepancy principle
I+n
1—-2n
When speaking of convergence rates to a solution of of an iterative method

0 <k<ky for 7>2 > 2.

(3.4) Hf _ F(xi*)H <7< Hy‘s — F(a})

zpy1 = U(zy) for solving an illposed problem we understand:

(3.5) (@) if 6=0 the rateof ‘

a:*—ka—>O as k — oo.

(3.6) (b) if o6>0 therateof ‘

x*—xk*((;)H%O as o0 — oo.

Under the general assumptions A; the rate of convergence of z;, — x, as k — oo
(with precise data, i.e. § = 0) or mi*@ — x, as 0 — 0 (with perturbed data)
will, in general, be arbitrarily slow. This is known for linear ill-posed problems
Kz = y where the rate of convergence is almost ompletely determined by the
tuple (v; || f||) in the source-wise representation

(3.7) r, —x0=(K'K)’f,v>0,feX

cf. Example 3.1 and Theorem 7.3 in (see [11]]). The same parameters also de-
termine the rate of convergence of Tikhonov regularization (see [12]]); the corre-
sponding numbers

(3.8) e —x9 = (F'(2.) F'(2,))" f,v >0, f € X
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play the same role in Tikhonov regularization for nonlinear problems (see [13]])
and in many iterative regularization methods (see [14]). In contrast to Tikhonov
regularization, assumption (with ||f|| being sufficiently small) is not enough
to obtain convergence rates for the Landweber iteration; we need further proper-
ties of I': we require

(3.9) F(x) = R, F'(x,),x € B,(x9),
where {R, : © € B,(x¢)} is a family of bounded linear operators R, : Y — Y with
(3.10) HR’E_IH gCHx—x*”x € B, (zo),

and C' is a positive constant. Note that in the linear case R, = I; therefore,
may be interpreted as a further restriction of the “non-linearity" of F'. In particular,
(3.9) implies that

N(F'(z,)) C N(F'(z)),z € B.(x).

It is not difficult to see that (3.9), (3.10) imply (3.9) with & = =z, for r being
sufficiently small.

Theorem 3.1. Assume that problem (3.1))
(3.11) Fi(z)=y;,j=1,...,p—1,

has a solution in B, (xy), that y°satisfes

s _

(3.12) Yi — Y

<dj€{0,1,....,p—1},
and that F fulfils

(1) F'(x) <1 forz € B.(xo)
2 HF(I) CF(3) - Fla)(z —3) < nHF(:c) - F(i)”,n <1 2.4 € B(o)

(3) F(z) = R.F'(z.), x € B,(x0), where {R, : © € B,(x0)} is a family of
< CHx — T,

bounded linear operators R, : Y — Y with |R, — I T €

Br($0)-

If x, — xq satisfies

e — 29 = (F'(2.) F'(2,))" f,v>0,f € X
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with some 0 < v < % and H f H being sufficiently small, then there exists a positive
constant c,, depending on v

-l < o
and
- rep] < s+ 12

forall 0 < k < k,. For 6 = 0 (3.1) and (3.13)) holds for all k > 0. Furthermore, for
6>0

(3.15) k, < Cl(HfH/g)?/(?vH)
and
1/(20+1)
(3.16) e 520/ (2v+1)

for some constsnts ¢y, co > 0, depending on v only.

3.2. Landweber’s Algorithm for the inverse problem. The Landweber algo-
rithm for solving the system Ax = b is

Thy1 = Tk + ’}/A+(b — Al’k)
where ~ is a selected parameter. We can write the Landweber iteration as
Ty = Ty,

for
Tr=(I—~A"A)x + A7b= Bx + h.
The Landweber algorithm actually solves the square linear system A~ A = A~b for
a least-squares solution of Ax = b. When there is a unique solution or unique least-
squares solution of Ax = b, say z, then the error at the k — th step is e, = T — x,
and we see that
Bey, = ejq1.

We want ¢, — 0, so we want || B||, < 1, this means that both T and B are Eu-
clidean strict contractions. Since B is Hermitian, B will be strict contractions if

and only ||B||, < 1, where ||B||, = p(B) is the matrix norm induced by the Eu-
clidean vector norm. On the other hand, when there are multiple solutions of
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Ax = b, the solution found by the Landweber algorithm will be the one closest to
the starting vector. In this case, we cannot define ¢;, and we do not want || B||, < 1;
that is, we do not need that B be a strict contraction, but something weaker. As
we shall see, since B is Hermitian, B will be av whenever ~ lies in the interval

(0,2/p(B)).

4. CONVERGENCE ANALYSIS

In this section, I give two lemmas, Lemma 4.1 and Lemma 4.2, as a basis for
convergence analysis.
Lemma 4.1. Let s € [0,1] and suppose that H : X — Y be a bounded linear
operator with the property HH H < 1. Then

ng—1ng_1—1 ni—1
(4.1) IT II - I[¢-BB)mt=t-t(BB) Hn] +1)”
Jk=0 Jjr—1=0 j1=0
ng—1ng—1—1 ni—1 k
(42) H H . H (I . B*B)n1+n2+...+nkB* < (H n; + 1>71/2
Jk=0 jr—1=0 Jj1=0 j=1
ni—1 no—1
(4.3) > (I- BB (BB")*+ > (I-B'BY*(BB*)"+ -
Jj1=0 Jj2=0
ng—1
+Y (I - B'BY*(BB") Hnj s
Jk=0
Lemma 4.2. Give p1,p2, ..., Pn, q1, G2, - - - , Qr are positive real numbers. Then, there is
a positive constant C'(max{p1,ps, ..., pr}, max{q, ¢, . . ., qx }) independent of ny, ns,
., ny so that
ni—1 no—1
D AN =) 4 Y (G 1) (e — o)
Jj1=0 J2=0
ne—1
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k Nk )
S O(max{pl7p27 s 7pk}7 ma’X{qla q2, ... an}) X (Z n] + 1)1—21-:1?1 Zi:l G

j=1
(
1
{max{py, ..., pr}, max{qs, ..., qu}} < 72
k
ln(l_[j:1 n;+1)
(4.4) x {max{py,...,pe}, max{qi, ..., q}} = =5
(H?:l n; + 1){{max{p17---,pk}7max{fh ----- ark}i—1
{max{pla s 7pk}7 maX{QIJ s 7Qk}} > #7
L > 2.

Throughout this section, to simplify the notation we set ¢;, := &, — 2+, a; ==
T — xo. First we prove the following result.

Theorem 4.1. Assume that the equation F(x) = y has a solution in Bz (x,) and F
satisfies the following conditions

(D HF —H(x—y H < nHF(x) —F(y)”, wheren < 1,2,y € B,(x0) C
Q(F);H = F’(xo) and H < 1,
(2) 27— = (H*H) v,0< 5 <1/2,
® |Pl) = Fy) - H = y)| <
Vz,y € B.(z9).

v =y + ||o = o)) F@) - F@w)

Y

Then, there exists a positive constant n depending on (3 only, with

ekH < Hv ‘(H n;+1)7°

(JJn+1"

AN
)

4.5) Koyl < | ’yH(ﬁ n 4+ 1) V2 for 0<k <k
=1
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Proof. First, I try to find out an expression for e, and ay, 0 < k < k,:
eer1 = ex + H'(§ — F(2y)) = H*(F(2) — F(27)) + H'(F (k) — F(27))
= e — H*(F(2) — F(a7)) + H*(§ — F())
4.6) = (I — H*H)e, — H* [F(afk) Pz — Hek} +HM(j — F(5))
ary1 = a + H*(§ — F(2))
= ap — H*(F(ax) — F(27)) + H(§ — F())
= (I —H*H)a, — H* [F(:fk) — F(z7) - Hak} + H*(§ —y)
4.7)  =(I—H*H)a, + H Heo — H* [F(:fk) ~F(aT) — Hak} FHY G —y)

Iput Zy = — | F(5y) — F(a) — Hek] For 0 < k < k,. So

(4.8) exr1 =1 —H'H)ey — H* Z, + H () — y)
and
(4.9) apr = (I — H* H)ay + (H*H)" 'y — H*Z, + H*(§ — y).
For 0 < n < n,. Therefore closed expression for error is. Without loss of generality
I hypothesize that ny = ny = ... = ny = n. So I have
(4.10) en= (I —H*H)*ey + k nz_l(f —~ H*HYH*Z, ;4
=0

n—1

kZ(I—H*H)jH*] (4 —v)

=0

(4.11) +

.

and consequently

n—1
(4.12) He, = (I - H'H)"ey+ kY (I - HHYH Z,_;_,

J=0

4.13) +

I+ (I - H*H)’mH*] (7 — ).
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For 0 <n <n,,

n—1 n—1
an=k» (I—HH(HH)"'y+k> (I-HHH Z, ;
j=0 Jj=0
n—1
(4.14) + Y (- H*H)JH*] () —y).
j=0
So

i
L

(4.15) an =5k (I —HHY(HH) "'y + (I — H H)"(H*H) "y

’—‘O

Sm.

kS (I—HHYH*Z,_;_, +
0

j:

n—1
kz I— H*H)JH*](A y)
Jj=

n—1

(4.16) k

(]

(I — H*HY(H*H)?*'~y — (I — H*H)"(H*H) "y

= o

+kY (I—HHYH Z,_j_1 +

J=0

3 .
—

kS (- H*H)jH*] (5 — y).

J

3

Il
o

In order to prove the result for 0 < n < n*, I use induction. For n = 0, the proof
is trivial and we assume that the result is true for Vj such that 0 < j < n, where

n < n*:
n—1
e[ < H(I — B H)" (H H) ol | + k3 |[(1 = BBV || 204
=0
—1
HY H*|[s
:0
n—1
(4.17) < (n*+ 1)*5H7H B G+ )| Z | + Vs
=0
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ol < 3 ey o+ - e |
- n—1
+kZH(I—H*H)jH* Ty |+ |60 = HEEY HE |5
j=0 §=0
n—1
4.18) < (nk—i-l)_ﬁHvH + (04 1) 7H RS+ | 2| + v
j=0
n—1
HHen < H(I—H*H)’mHeo +kZH(I—H*H)J'HH* Zp ||+ 6
n—1
(4.19) < (nk + 1)—5-1/2H7H kG| 2] 0
j=0
Now by making use of (2.2] @ ) and assumption n we get
’Zn < HHen an|| + HHen en
11—« 11—«
(4.20) §mcHHen n, +mcHHen enll,m > 2.
By using induction assumption, I have
(4.21) ‘Zn i 1) < m?en H H n—j)" 26-1/2
So
n—1 n—1 9
EY G40 Zosja|| kDY G+ D)7 PmPe?||y|| (n— )70
=0 j=0
(4.22) = 1) (n — j)=20712
or
n—1 n—1
G+ 1) Zp || < DG+ DT n—j)?
Jj=0 7=0
2
(4.23) = mk ) U2( — j)28-1/2
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Hence, by using the Lemma 4.2,

n—1

S+ 1) )

j=0
z IfB < 1/m?
k -2 ln(nkJrl) . 2
(4.24) < C(1/2,28 +1/2)(n* + 1) ) TR 1 /m?
(’rlk-‘r135671/2 [fﬁ > 1/m2
So
n—1 \/_
; -1/2 . Y
(4.25) > G+ 2| < = H H nf 1) 4 g,

where M is a constant that depends on /. So, I have

! (k4 1)P \/ﬁa)

< ¢ (1t 0] 2]

€n
< gt et <77
< gon e 2 plpflot + 07+ o2
R R e e T

Qn

< (ot 0o a0 i)

k
M k
< O M o+ )72 Y 2
M k 11/2
@an <O ey O DR
By using Lemma 4.2,

kZ]—l— —28-1/2

(4.28) < C(1/2,2641/2)(n* +1)728 { In(n* + 1) If3 < 1/m?

(n* + 12612 [f8>1/m?
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Hence,
n—1
M 2
=0
So,
M )
430 e < Tt 1 S
For 0 < n < n, discrepancy principle (8) gives,
1 1
(4.31) U+ s o< < HQ—F(:%) 5+ HHen .
1 —ma 1 -«
Hence, by making use of the above result (4.30), I get
m(l + a) k —B—1/2 1
— |5 < 1 —0
T |0 S0 g tm e Mt £ 7 =
1 1
<o+ ———(m+ My|o )] 0t + P2 s
- +k(1—a)(m+ B‘V)VH(TL 1) +k‘l—mo¢‘
1 1
w e

= 1= mal k(1 —«)
This would give

m2a 1
|1 —mal ~ k(1-a)

e o+ 177

So, I have
‘1 — ma‘ & 5
(439 < ey + Malo Pl e+ 0
1 —ma _
1 —ma _
(4.35) anll < (1 + W) (m + Mg y ) 0 (nk + 1) B

337
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(4.36) ‘

He,

< (vl Yoo«

Or in general, we have something to prove

I LR I e

w30 e = (10 el o s LT+ 0
@39 an§<uwﬁ%ﬁﬂJ@HWMMMMﬂi@+D%
oo e = (1 gl e an o T+ 072

O

Theorem 4.2. Assume that the equation F(x) = y has a solution in Bz (xo) and F
satisfies the following conditions

) ||F(2) = Fy) ~ Hiw—y)|| < 0| F@)~ F(y)||, where: n < 3.2y € By(wo) €

(F); H=F'(xg) and H < 1,

(2) 7 —xo = (H*H)?y,0< < 1/2,

@) ||F() - Fly) - Hw - )| <
Va,y € B, ()

)

v+ =l - o]

Then, according to the assumption of the theorem, we always have

o] < 2 (Il

(4.41) < MQHPY‘)W&#

‘;ﬁ — T,

a positive constant M, M, depending on [ only, m > 2.
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Proof. From (4.46) For 0 < n < n,. Therefore closed expression for error is.

Without loss of generality I hypothesize that ny = ny, = ... = n; = n. So I have
ns—1
=(I-HH"~y+k> (I-HHH Z, ;,
§=0
ns—1
(4.42) + kY (- H*H)JH*] (7 — )
=0
nsx—1
= (H*H) Q. + |k Y (I - H*H)JH*] (& —y).
=0
In there
(4.43) Qn. = (I — H* H)k™e Z (I —HHY(HH)Y* P2, 4,
=0
with
‘Zn* =01, —1,
ns—1
|@u| < || = memyma||+ &> | = mmy ey 2,
j_

Nsx—1
4.44) < (. + 1)0H7H kY H(j 12|z, .
=0
So,
n—1
(4.45) kY (j+ 1) Zn 0 “12(p, — )12,
7=0
Hence, by using the Lemma 4.2,
n—1
kY G+ n— )2t
7=0
1 IfB <1/m?

(4.46) < C(1/2—B,28+1/2)(n" + 1) { In(n* +1) If3=1/m?
(nF +1)2-12 [1fB > 1/m?
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—

n—

(j+ 1) 12 (n — j) 2012

<.
I
o

2 ) Ifg<1/m?
ln(nk-‘rl) Ifﬁ _ 1/m2 ‘

(nk+13€25—1/2 Ifﬂ > 1/m2

4.47)  <C(1/2—-8,28+1/2)(n" + 1)

We know that ~ has to be small, therefore I consider v < 1. Hence I have,

Qr, < ||7|| + Ms||4||* < (315 + D)||y|-

Therefore,

|ruraye.

- ”Hen — (I — (I — HH)"(j - y)H
.
< HF(%M — F(z.)) — He,,

< e

+ HF(% - F(x*))” + %

< |G, — F@) | + o - F@a) |+
<(n+ 1)Hy — F(&,.)| + %

(n+1)(1+71)+ 1)5.

4.48 <
( ) < 2
1 mB_
From mpB+1 + mB+1 1’
. N+ D1 +7)+1)0\merr [, - AT
e myq. | < (DD ()
O\ it 1
(4.49) <M (Z) 7l
where M is some positive constant and note that when n, = 0, |le, | <

mpB

MHVHﬁ (%) """ and when n, > 0, I apply @37) with n = n, — 1 to obtain

)
(4.50) Z < 77||”yH(n*)_ﬁ_1/2.
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Now I put &; = ¢,

*

(4.51) ) n

By making use of this result we get,

Jen.| < |71 Y Q]| + Vs,
< M| g (=) (57
< M|y 6757 4 Ay e
(452 < My 7

5. CONCLUDE

In this article, I introduce lemmas such as Lemma 4.1 and Lemma 4.2 to analyze
convergence on the Inverse Math problem using Algorithm Landweber. That is the
main result in this paper.
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