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ON THE EXISTENCE AND UNIQUENESS OF THE WEAKENED CLASSICAL
SOLUTION ON THE AXIS OF THE THIRD CENTRALLY SYMMETRIC MIXED
PROBLEM FOR THE THREE-DIMENSIONAL NONHOMOGENEOUS GENERAL

HYPERBOLIC EQUATION OF THE SECOND ORDER

Damébé Kolani1, N’gniamessan Gbenouga, and Kokou Tcharie

ABSTRACT. We demonstrate the existence and uniqueness of the weakened clas-
sical solution on the axis of the third centrally symmetric mixed problem for the
three-dimensional non-homogeneous general hyperbolic equation of the second
order with the minimum conditions on the initial data.

1. INTRODUCTION AND POSITION OF THE PROBLEM

In the cylinder P = G× [0, T ] with G = {x ∈ R3/ |x| = r < R}, we consider the
following mixed problem:

∂2u

∂t2
+

3∑
i=1

ai(x, t)
∂2u

∂xi∂t
−△u(x, t) +

3∑
i=1

bi(x, t)
∂u

∂xi

+ c(x, t)
∂u

∂t
+ q(x, t)u = f(x, t),

(1.1)

with initial conditions
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(1.2)

u(x, 0) = φ(|x|)
∂u(x, 0)

∂t
= ψ(|x|),

and the boundary condition of the third type

(1.3)
(
∂u(x, t)

∂n
+

1

|x|
u(x, t)

)∣∣∣∣
Γ

= 0,

where φ and ψ are defined over the whole ball G,
∂

∂n
is the derivative at the

point (x, t) following the external normal n of the lateral surface

Γ =
{
(x, t) ∈ P : |x| = R, 0 ≤ t ≤ T

}
of the closed cylinder P .

Because of the central symmetry, the normal derivative is equal to the radial

differential operator i.e.
∂

∂n
=

∂

∂r
with |x| = r.

We assume that the coefficients ai, bi, c, q of the equation (1.1) and the right
hand side f are real and continuous in the closed cylinder P and that their first

derivatives
∂ai(x, t)

∂x
,
∂bi(x, t)

∂x
,
∂c(x, t)

∂x
,
∂q(x, t)

∂x
and

∂f(x, t)

∂x
are bounded in P i.e.

(1.4)

 ai, bi, c, q, f ∈ C(P ),

∂ai(x, t)

∂x
,
∂bi(x, t)

∂x
,
∂c(x, t)

∂x
,
∂q(x, t)

∂x
and

∂f(x, t)

∂x
∈ L∞(P ).

The nature of central symmetry is manifested in the operator △, in the geometry
of the closed cylinder P in which we study the problem, in the coefficients of the
equation (1.1) and in the functions f(x, t) and u(x, t) as follows:

(1.5)



ai(x, t) = xia(r, t),

bi(x, t) = xib(r, t),

c(x, t) = c(r, t),

q(x, t) = q(r, t),

f(x, t) = f(r, t),

u(x, t) = u(r, t).
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The coefficients ai(x, t) and bi(x, t) as well as the function f obey the conciliation
condition at the origin of the axis of symmetry of the equation (1.1) and to the
boundary conditions of the domain of study (1.3) that is to say

(1.6)


∑3

i=1 ai(x, t)
∣∣
Γ
=
∑3

i=1 bi(x, t)
∣∣
Γ
= f(x, t)|Γ = 0, 0 ≤ t ≤ T,∑3

i=1 ai(x, t)
∣∣
|x|=0

=
∑3

i=1 bi(x, t)
∣∣
|x|=0

= f(x, t)||x|=0 = 0. 0 ≤ t ≤ T.

With the variables (r, t), the differential properties of the coefficients of the equa-
tion and of the second member f are expressed as follows:

(1.7)


a(r, t), b(r, t), c(r, t), q(r, t), f(r, t) ∈ C(Q)

∂a(r, t)

∂r
,
∂b(r, t)

∂r
,
∂c(r, t)

∂r
,
∂q(r, t)

∂r
and

∂f(r, t)

∂r
∈ L∞(Q)

with Q = (0, R)× (0, T ).

For the non-homogeneous general hyperbolic equation (1.1), let us pose the fol-
lowing problem: determine the function u(x, t) belonging to the class C2

{r=0}(P )

which transforms the equation (1.1) into an identity in P \{0}×[0, T ] satisfying the
initial conditions (1.2) and the condition at the limits (1.3) on the lateral surface
Γ.

Based on the requirement imposed on the unknown function u(x, t), let us give
the following definition.

Definition 1.1. By classical solution weakened on the axis r = 0 of the mixed problem
(1.1), (1.2), (1.3), the function u(x, t) ∈ C2

{r=0}(P ) transforming the equation (1.1)
into an identity in the open cylinder from which we exclude the lateral axis r = 0 that
is to say (i.e) (P \ {0} × [0, T ]) and checking the conditions (1.2), (1.3) in the usual
sense.

Such a definition makes it possible to formulate the problem posed for the equa-
tion (1.1) in a more laconic way: find the weakened classical solution on the axis
r = 0 of the mixed problem (1.1), (1.2), (1.3).

To solve the problem thus posed, we must define the necessary and sufficient
conditions to impose on the initial data φ, ψ and on the second member f so
that the solution u(x, t) of the third mixed problem (1.1), (1.2), (1.3) is classic
everywhere but weakened on the axis of symmetry.
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2. ON THE NECESSARY AND SUFFICIENT CONDITIONS FOR THE EXISTENCE OF THE

WEAKENED CLASSICAL SOLUTION ON THE AXIS OF THE THIRD CENTRALLY

SYMMETRIC MIXED PROBLEM FOR THE THREE-DIMENSIONAL NONHOMOGENEOUS

GENERAL HYPERBOLIC EQUATION OF THE SECOND ORDER

We consider in the cylinder P = G × [0, T ], the mixed problem (1.1), (1.2),
(1.3). By passing in spherical coordinates, our problem reduces to the following
mixed problem whose equation depends on a single space variable with Bessel
operator in the main part.

∂2u

∂t2
+ ra(r, t)

∂2u

∂r∂t
−
(
∂2u

∂r2
+

2

r

∂u

∂r

)
+ rb(r, t)

∂u

∂r
+ c(r, t)

∂u

∂t
+

q(r, t)u = f(r, t), (r, t) ∈ Q,

(2.1)

with initial conditions

(2.2)

u(r, 0) = φ(r)

∂u(r, 0)

∂t
= ψ(r), 0 ≤ r ≤ R,

and the boundary condition of the third type

(2.3)
(
∂u(r, t)

∂r
+

1

r
u(r, t)

)∣∣∣∣
r=R

= 0, 0 ≤ t ≤ T.

The equation (2.1) is one-dimensional hyperbolic of the second order with source
term.

It is obvious that the problems (1.1), (1.2), (1.3) and (2.1), (2.2), (2.3) are
equivalent in the whole domain where the problem is placed except on the axis
|x| = r = 0, because the functional definition of the change in spherical coordi-
nates is equal to zero in the case of central symmetry, only for r = 0.

Remark 2.1. If we were looking for the solution to the problem (1.1), (1.2), (1.3)
belonging to the class C2

{r=0}(P ) in the sense of the definition 1.1, then it would be
sufficient to consider one of the following conditions

(2.4) lim
|x|→0

|x|△u(x, t) = 0,

(2.5) lim
|x|→0

|x|∂
2u

∂t2
(x, t) = 0.
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For the rest, we use the condition (2.4).
If the function u(x, t) is a classical solution (weakened or usual) of the problem

(1.1), (1.2) with the boundary condition

(2.6) u(x, t)∣∣∣
Γ

= 0,

then from the equation (1.1), from the condition (2.6) as well as from the condi-
tions

(2.7)
3∑

i=1

ai(x, t)

∣∣∣∣∣
Γ

=
3∑

i=1

bi(x, t)

∣∣∣∣∣
Γ

= 0, 0 ≤ t ≤ T,

we obtain the conciliation conditions,

(2.8) △u∣∣
Γ

= f(|x|, t)∣∣
Γ

= 0

by crossing the limit.
According to the definition 1.1 and the remark 2.1, the solution of the singu-

lar problem (2.1), (2.2), (2.3) precisely the function u(r, t) which transforms the
equation (2.1) into an identity in Q and verifying (2.2), (2.3) is searched in the
class of functions u(r, t) ∈ C1(Q)∩C2((0, R]× [0, T ]), for which the following limit
equalities are true:

(2.9) lim
r→0

r

(
∂2u(r, t)

∂r2
+

2

r

∂u(r, t)

∂r

)
= 0,

(2.10) lim
r→0

r
∂2u

∂r∂t
(r, t) = 0.

Furthermore, the solution of the problem (2.1)-(2.3) must respect the conditions
(2.8) which for the variables r and t are of the form

(2.11) lim
r→R

(
∂2u(r, t)

∂r2
+

2

r

∂u(r, t)

∂r

)
= lim

r→R
f(r, t) = 0,

(2.12) lim
r→R

∂2u(r, t)

∂t2
= 0.

The condition (2.12) is an additional conciliation condition.
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For this equation (2.1), if we make the following change of variable for r ̸= 0

(2.13) v(r, t) = ru(r, t),

then we multiply each member of the equality obtained by r, the equation (2.1)
takes the form

L v(r, t) ≡ ∂2v

∂t2
− ∂2v

∂r2
+ A(r, t)

∂2v

∂r∂t
+B(r, t)

∂v

∂r
+ C(r, t)

∂v

∂t

+D(r, t)v = f1(r, t), (r, t) ∈ Q = (0, R)× (0, T )

(2.14)

where we placed

(2.15)



A(r, t) = ra(r, t),

B(r, t) = rb(r, t),

C(r, t) = c(r, t)− a(r, t),

D(r, t) = q(r, t)− b(r, t),

f1(r, t) = rf(r, t).

Thus, outside the axis r = 0, assuming that u is bounded and taking into account
the change of variable (2.13), the problem (2.1), (2.2), (2.3) is equivalent to the
following problem

L v(r, t) ≡ ∂2v

∂t2
− ∂2v

∂r2
+ A(r, t)

∂2v

∂r∂t
+B(r, t)

∂v

∂r
+ C(r, t)

∂v

∂t

+D(r, t)v = f1(r, t), (r, t) ∈ Q = (0, R)× (0, T ),

(2.16)

with initial conditions

(2.17) v(r, 0) = Φ(r),
∂v

∂t
(r, 0) = Ψ(r), 0 ≤ r ≤ R,

and the boundary conditions of the first type on the edge r = 0 and of the second
type on the limit r = R respectively

(2.18) v(0, t) = 0,
∂v

∂r
(R, t) = 0, 0 ≤ t ≤ T.

Here we placed

(2.19)

Φ(r) = rφ(r),

Ψ(r) = rψ(r), 0 ≤ r ≤ R.
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It should also be remembered that the necessary and sufficient conditions for the
existence of the weakened classical solution u(x, t) on the axis r = 0 of the first
mixed problem with central symmetry for the non-homogeneous general hyper-
bolic equation second order three-dimensional (see Siliadin [6]) are the following
conditions on the initial functions φ and ψ

(2.20) φ(r) ∈ C1[0, R] ∩ C2(0, R], φ(R) = △φ(R) = 0, lim
r→0

r△(r) = 0;

(2.21) ψ(r) ∈ C[0, R] ∩ C1(0, R], ψ(R) = 0, lim
r→0

dψ(r)

dr
= 0.

Conditions (2.20) and (2.21), it follows that the initial functions Φ and Ψ defined
by the formula (2.19) verify according to the article [3], the conditions

(2.22) Φ(r) ∈ C2[0, R], Φ(0) = Φ(R) = 0,
d2Φ(0)

dr2
=
d2Φ(R)

dr2
= 0,

(2.23) Ψ(r) ∈ C1[0, R], Ψ(0) = Ψ(R) = 0.

The following paragraph contains the demonstration of the existence of the weak-
ened classical solution on the axis r = 0 of the third mixed problem (1.1), (1.2),
(1.3) when the functions φ and ψ satisfy the conditions (2.20), (2.21). To do this,
we will rely on the diagram which was exposed during the proof of the sufficiency
of the theorem (see KOLANI [2]).

Let’s move on to the resolution demonstration.

2.1. Strongly generalized solution. Consider the following sets of functions:

D0 =

{
u(r, t) ∈ C3(Q) : u∣∣

r=0

= u∣∣
r=R

= 0,
∂2u

∂r2
∣∣
r=0

=
∂2u

∂r2
∣∣
r=R

= 0

}
,

D1 =

{
Φ(r) ∈ C3[0, R] : Φ(0) = Φ(R) = 0,

d2Φ(0)

dr2
=
d2Φ(R)

dr2
= 0

}
,

D2 = {Ψ(r) ∈ C2[0, R] : Ψ(0) = Ψ(R) = 0} ,
D3 =

{
f1(r, t) ∈ C1(Q) : f1(0, t) = f1(R, t) = 0

}
,

D4 =

{
u(r, t) ∈ C3(Q) : u(0, t) =

∂2u(0, t)

∂r2
= 0,

∂u(R, t)

∂r
= 0

}
,

D5 =

{
Φ(r) ∈ C3[0, R] : Φ(0) =

d2Φ(0)

dr2
= 0,

dΦ(R)

dr
= 0

}
,

D6 =

{
Ψ(r) ∈ C2[0, R] : Ψ(0) = 0,

dΨ(R)

dr
= 0

}
,
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D7(L ) =

{
v ∈ C2(Q) : v(0, t) = 0,

∂v(R, t)

∂r
= 0

}
,

D(L) =

{
v ∈ C2(Q) : v(0, t) = v(R, t) = 0,

∂2v(0, t)

∂r2
=
∂2v(R, t)

∂r2
= 0

}
.

We have the following assertion.

Lemma 2.1. For any function v(r, t) ∈ D4 transforming the equation (2.16) into an
identity in the rectangle (0, R) × (0, T ) and take the point t = 0, the value v(r, 0) =

Φ(r) ∈ D5,
∂v(r, 0)

∂t
= Ψ(r) ∈ D6, we have the inequality

sup
0≤t≤T

{∫ R

0

[(
∂2v

∂r2

)2

+

(
∂v

∂r

)2

+ v2 +

(
∂2v

∂r∂t

)2

+

(
∂v

∂t

)2
]
dr

}

≤c3
∫ R

0

[(
d2Φ

dr2

)2

+

(
dΦ

dr

)2

+ Φ2 +

(
dΨ

dr

)2

+ Ψ 2

]
dr

+c4

∫ T

0

∫ R

0

[(
∂f1
∂r

)2

+ f 2
1

]
drdt

(2.24)

where the constants c3 and c4 do not depend on v, Φ and Ψ and are defined by

c3 = c1e
c5T with c5 = max {6M + 1, (5 + 2T )M + 1} ; c1 = 2ec0T

where c0 = max {6M ; (5 + 2T )M} .T ; c4 = ec5T
(2.25)

and

M = max
Q

{R|A(r, t)|; |A(r, t)|; |C(r, t)|; |D(r, t)|;

R

∣∣∣∣∂A∂r (r, t)
∣∣∣∣; ∣∣∣∣∂A∂r (r, t)

∣∣∣∣; ∣∣∣∣∂C∂r (r, t)
∣∣∣∣; ∣∣∣∣∂D∂r (r, t)

∣∣∣∣} .(2.26)

Proof. Let us denote by E4 the Banach space which is the completeness of the set
of functions D3 by the norm

||v||E4 =

(
sup

0≤t≤T

{∫ R

0

((
∂2v

∂r2

)2

+

(
∂v

∂r

)2

+ v2 +

(
∂2v

∂r∂t

)2

+

(
∂v

∂t

)2
)
dr

}) 1
2

.

(According to the left part of the inequality (2.24)). By the symbol E5, let us
designate the Hilbert space formed of all the elements F = {f1, Φ, Ψ} for which
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we have the following finite standard

||F||E5 = (F ,F)
1
2
E5

=
(
c3

(
||Φ||2W 2

2 (0,R) + ||Ψ ||2W 1
2 (0,R)

)
+ c4|||f1|||2

) 1
2
,

where

|||f1|||2 =
∫ T

0

∫ R

0

((
∂f1
∂r

)2

+ f 2
1

)
drdt.

Here the scalar product is defined as follows. For any two elements Fi =

{Φi, Ψi}, Φi(r) ∈ E6(0, R), Ψi(r) ∈ E7(0, R) (i = 1, 2, ) where the symbols
E6(0, R), E7(0, R) designate the Hilbert spaces that we obtain by the completeness
of the sets D5 and D6 according to the norms of Sobolev spaces W 2

2 (0, R),W
1
2 (0, R)

respectively, (F1,F2)E5 = (Φ1, Φ2)W 2
2 (0,R) + (Ψ1, Ψ2)W 1

2 (0,R). Everywhere after com-
pleteness, we must understand differentiability in the sense of distributions (gen-

eralized functions). Any function v ∈ D7(L ) =

{
C2(Q) : v(0, t) = 0,

∂v

∂r
(R, t) = 0

}
can be approximated in the norm C2(Q) by the functions of D4. This is why, for
each function v(r, t) ∈ D7(L ) satisfying the equation (2.16) in Q and the initial
conditions (2.17) on [0, R], the inequality (2.24) is verified. The initial functions
of (2.17) satisfy (2.22), (2.23). The sets of functions D5, D6 defined respectively
by the conditions (2.22), (2.23) are dense.

Then we have the following lemma.

Lemma 2.2. For any function v ∈ D7(L ), we have the following inequality

(2.27) ||v||2E4
≤ c3||F||2E5,

where the constant c3 does not depend on v and is defined using the formula (2.25).

The proof of the inequality (2.27) follows from the successive closures of the in-
equality (2.24) according to the norms of the spaces C2(Q) and C2[0, R]×C1[0, R]

then after according to the norms of the spaces E4 and E5.

Let us put the problem (2.16), (2.17), (2.18) into conformity with the opera-
tional equation

(2.28) Lv = F ,
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where the operator L admits in E4 the dense definition domain D(L) = D7(L )

and acts according to the law Lv =

{
L v, v

∣∣
t=0
,
∂v

∂t

∣∣
t=0

}
of the Banach space E4

in the Hilbertian space E5.

From lemma 2.2, it follows that for any function v ∈ D7(L ) we have the in-
equality

(2.29) ||v||E4 ≤ c2||Lv||E5

where the constant c2 =
√
c1 with c1 defined in the formulas (2.25).

In a standard way, we demonstrate that the operator L admits a closure which
we designate by L.

Let’s look at the operational equation

(2.30) Lv = F , F = {f1,Φ, Ψ} ∈ E5.

Definition 2.1. The solution of the equation (2.30) is called the highly generalized
solution of the mixed problem (2.16), (2.17), (2.18).

Using the passage to the limit, we extend the inequality (2.29) to the strongly
generalized solution. We obtain that for any element of the domain of definition
D(L) of the operator L, we have the inequality

(2.31) ||v||E4 ≤ c2||Lv||E5.

From the inequality (2.31), it follows that the highly generalized solution of the
mixed problem (2.16), (2.17), (2.18) is unique and R(L) = R(L). Therefore,
if R(L) is dense in the space E5, then the strongly generalized solution of the
mixed problem (2.16) -(2.18) exists whatever the second member F ∈ E5. The
special case (n = 1, m = 1, A(t) ≡ A) of the work of Radino and Yurchuk [5],
obtained for the Cauchy problem in general form, demonstrates that the mixed
problem (2.16)-(2.18) admits a strongly generalized solution. And immediately
from theorem 2 of the article [5] it follows the density of the set of values of the
operator L: R(L) = E5. Thus, we have the following lemma.

Lemma 2.3. If the conditions of lemma 2.2 are verified, then for all F = {f1,Φ, Ψ} ∈
E5 there exists a unique strongly generalized solution v = (L)−1F = (L−1)F of the
problem (2.16), (2.17), (2.18).

□
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2.2. Search for the regularity of the highly generalized Solution. We consider
the mixed problem (2.16), (2.17), (2.18) in the domain Q = [0, R]× [0, T ].

Based on (1.4), we also assume that the functions A, B, C, D, f1,
∂A

∂r
,
∂A

∂t
are

continuous in Q = [0, R] × [0, T ], the functions
∂2A

∂t2
,
∂B

∂r
,
∂C

∂r
,
∂D

∂r
are bounded

in Q and satisfy the conditions for reconciling the coefficients and the boundary
conditions

(2.32)

A(R, t) = B(R, t) = f1(R, t) = 0, 0 ≤ t ≤ T

A(0, t) = B(0, t) = f1(0, t) = 0, 0 ≤ t ≤ T

which follow from (1.6).
Under the above conditions, it appears that the function v(r, t) is of class C2(Q)

and that it is also a classical solution of the problem (2.16), (2.17), (2.18) then
from the equation (2.16) and the conditions (2.17), (2.18), (2.32), it follows that
the functions initials Φ and Ψ check according to [8] the conditions (2.22), (2.23).

Thus, the conditions (2.22), (2.23) are the necessary conditions for the exis-
tence of the classical solution v(r, t) of the problem (2.16), (2.17), (2.18).

We will now demonstrate that these conditions (2.22), (2.23) are also sufficient
conditions for the existence of the classical solution of the problem (2.16)-(2.18).

From the definition of a strongly generalized solution, (see Morou [4], Siliadin
[7]) there exists a sequence of functions vn ∈ C2(Q) such that vn → v following
the norm of the first member of the inequality (2.24) and whose terms are classical
solutions of the problems

L vn(r, t) ≡
∂2vn
∂t2

− ∂2vn
∂r2

+ A(r, t)
∂2vn
∂r∂t

+B(r, t)
∂vn
∂r

+ C(r, t)
∂vn
∂t

+D(r, t)vn = f1,n(r, t), (r, t) ∈ Q = (0, R)× (0, T )

(2.33)

with initial conditions

(2.34) vn(r, 0) = Φn(r),
∂vn
∂t

(r, 0) = Ψn(r), 0 ≤ r ≤ R

and boundary conditions

(2.35) vn(0, t) = 0,
∂vn
∂r

(R, t) = 0, 0 ≤ t ≤ T
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while Φn → Φ and Ψn → Ψ following the norms of the Sobolev spaces W 2
2 (0, R)

and W 1
2 (0, R) respectively. (see Morou [4], Siliadin [7]) If vn ∈ C2(Q) is a

classical solution, then by applying the condition (2.34) to the equation (2.33)
and by virtue of conditions (2.22) and (2.23) and the conciliation and boundary
conditions (2.32), it follows that vn satisfy the conditions

(2.36)
∂2vn(0, t)

∂r2
=
∂2vn(R, t)

∂r2
= 0.

Theorem 2.1. For the highly generalized solution v(r, t) to be a classical solution
of the problem (2.16)-(2.18), it is sufficient that the initial functions Φ and Ψ re-
spectively verify the conditions (2.22), (2.23) and that the second member f1 of the
equation (2.16) satisfies the following conditions:

(2.37) f1(r, t) ∈ C ([0, R]× [0, T ]) ,

(2.38) f1(r, t)∣∣
Γ

= 0, with Γ = ∂Q,

(2.39)
∫ t

0

f1 (h1(g1(r, t), 0), τ) dτ ∈ C1(Q),

(2.40)
∫ t

0

f1 (h2(g2(r, t), 0), τ) dτ ∈ C1(Q),

where f1 denotes the extension of f1 constructed as follows: first, we extend the func-
tion f1(r, t) of the segment [0, R] × [0, T ] on the segment [−R, 0] × [0, T ] in an odd
way then after we extend it in an even way compared to the axis r = R of the seg-
ment [−R,R] × [0, T ] on the segment [R, 3R] × [0, T ]. The function thus obtained
is extended periodically by period 4R of the segment [−R, 3R] × [0, T ] on the plane
R1 × [0, T ].

Proof. Let us denote by Φ, Φn, Ψ , Ψn, the extensions of the functions Φ, Φn, Ψ , Ψn

respectively obtained as follows: first, we extend Φ, Φn, Ψ and Ψn of the segment
[0, R] on the segment [−R, 0] in an odd way, then afterwards we extend them in
an even way with respect to the axis r = R of the segment [−R,R] on the segment
[R, 3R]. The functions thus obtained are extended periodically by period 4R of the
segment [−R, 3R] on any axis R1. It is clear that Φ, Φn, Ψ and Ψn are odd with
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respect to the points 2mR, m = 0,±1,±2, ... and even with respect to the points
(2m+ 1)R, m = 0,±1,±2, ....

By the symbols Â(r, t) = r̃â(r, t), B̂(r, t) = r̃b̂(r, t), Ĉ(r, t) = ĉ(r, t) − â(r, t),
D̂(r, t) = q̂(r, t) − b̂(r, t) we have respectively designated the extensions of the
functions A(r, t), B(r, t), C(r, t), D(r, t) of Q on the half-plane R1 × [0, T ] : first in
an even way with respect to the axis r = 0 of Q on [−R, 0] × [0, T ], after in an
even way with respect to the axis r = R of [−R,R]× [0, T ] on [R, 3R]× [0, T ] and
finally periodically of period 4R of [−R, 3R] × [0, T ] on the half-plane R1 × [0, T ].

By r̃ let us denote the periodic extension of period 4R of the function r obtained
by the even extension with respect to r = 0 and the odd extension of [−R,R] on
(R, 3R) with respect to r = R, subsequently extended on the axis R1 of period 4R.
The functions v, vn are 4R-periodic following r on R1 × [0, T ] having a structure
following the variable r, analogous to the extension Φ, Φn, Ψ , Ψn as functions
depending on a single variable.

Differential properties of A(r, t), B(r, t), C(r, t), D(r, t) indicated in (1.7) and
the procedure extension of these functions on the half-plane R1 × [0, T ], it follows
that Â(r, t), B̂(r, t), Ĉ(r, t), D̂(r, t) are continuous, bounded and admit piecewise
continuous first derivatives following r on the half-plane R1 × [0, T ]. From the
conditions (2.22), (2.23), it follows that

(2.41) Φ, Φn ∈ C2(R1); Ψ, Ψn ∈ C1(R1)

and vn ∈ C2([0, R]× [0, T ]) is classical solution of the following Cauchy problem

L vn(r, t) ≡
∂2vn
∂t2

− ∂2vn
∂r2

+ Â(r, t)
∂2vn
∂r∂t

+ B̂(r, t)
∂vn
∂r

+ Ĉ(r, t)
∂vn
∂t

+ D̂(r, t)vn = f1n(r, t), (r, t) ∈ Q = (0, R)× (0, T )

(2.42)

(2.43) vn(r, 0) = Φn(r),
∂vn
∂t

(r, 0) = Ψn(r), 0 ≤ r ≤ R

and boundary conditions

(2.44) vn(0, t) = 0,
∂vn
∂r

(R, t) = 0. 0 ≤ t ≤ T.



358 D. Kolani, N. Gbenouga, and K. Tcharie

If we admit the equation (2.42) in the form ∂
∂t

+

Â
2
−

√
Â2

4
+ 1

 ∂

∂r
−

(
∂

∂t
+
Â

2

∂

∂r

)
ln

√
Â2

4
+ 1 +

1

2

∂Â

∂r


×

∂vn
∂t

+

Â
2
+

√
Â2

4
+ 1

 ∂vn
∂r

 = F1n(r, t)

(2.45)

where

(2.46) F1n(r, t) = Fn(r, t) + f1(r, t)

with

Fn =

 ∂

∂t
+

Â
2
−

√
Â2

4
+ 1

 ∂

∂r

Â
2
+

√
Â2

4
+ 1

 ∂vn
∂r


+

−
( ∂

∂t
− Â

2

∂

∂r

)
ln

√
Â2

4
+ 1

+
1

2

∂Â

∂r


×

∂vn
∂t

+

Â
2
+

√
Â2

4
+ 1

 ∂vn
∂r

− Ĉ
∂vn
∂t

− B̂
∂vn
∂r

− D̂vn

(2.47)

and f1, the extension of f1 constructed in paragraph 2.2.
Then using d’Alembert’s formula associated with Duhamel’s principle, we obtain

the solution of the mixed problem (2.42)-(2.44) in the form

vn(r, t) =
Φn (h2 (g2(r, t), 0)) + Φn (h1(g1(r, t), 0))

2

+
1

2

∫ h2(g2(r,t),0)

h1(g1(r,t),0)

Ψn(ξ) +
Â

2
(ξ, 0)Φ′

n(ξ)√
Â2

4
(ξ, 0) + 1

 dξ

+
1

2

∫ t

0

∫ h2(g2(r,t),ξ)

h1(g1(r,t),ξ)

 F1n(ξ, τ)√
Â2

4
(ξ, τ) + 1

 dξdτ,

(2.48)
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where g1(r, t) = k1 and g2(r, t) = k2 are the characteristic functions of the equation
(2.42), while the functions h1(y, τ) and h2(y, τ) are for all τ inverse functions to
the functions g1(r, t) and g2(r, t) respectively.

As Â, B̂ ∈ C1(R×[0, T ]) then g1, g2 ∈ C2(R×[0, T ]) and h1, h2 ∈ C2(R×[0, T ]).

It should be noted that the special case where A(r, t) = 0, g1(r, t) = r − t,
g2(r, t) = r + t, h1(y, τ) = y + τ , h2(y, τ) = y − τ , the formula (2.48) is the well-
known one of d’Alembert for the vibration equation of a string.

When (r, t) ∈ Q, vn(r, t) = vn(r, t). In the formula (2.48), let (r, t) ∈ Q and
passing to the limit when n → ∞, then the strongly generalized solution v(r, t)

takes the form

v(r, t) =
Φ (h2 (g2(r, t), 0)) + Φ (h1(g1(r, t), 0))

2

+
1

2

∫ h2(g2(r,t),0)

h1(g1(r,t),0)

Ψ(ξ) +
Â

2
(ξ, 0)Φ′(ξ)√

Â2

4
(ξ, 0) + 1

 dξ

+
1

2

∫ t

0

∫ h2(g2(r,t),ξ)

h1(g1(r,t),ξ)

 F1(ξ, τ)√
Â2

4
(ξ, τ) + 1

 dξdτ

(2.49)

with

F1(r, t) = F (r, t) + f1(r, t)

=

 ∂

∂t
+

Â
2
−

√
Â2

4
+ 1

 ∂

∂r

Â
2
+

√
Â2

4
+ 1

 ∂v

∂r


+

−
( ∂

∂t
− Â

2

∂

∂r

)
ln

√
Â2

4
+ 1

+
1

2

∂Â

∂r

(2.50)

×

∂v
∂t

+

Â
2
+

√
Â2

4
+ 1

 ∂v

∂r

− Ĉ
∂v

∂t
− B̂

∂v

∂r
− D̂vf1(r, t).

Let us now show that the function v(r, t) is twice continuously differentiable in Q
i.e. v(r, t) ∈ C2(Q).
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Note that the first two terms of the right hand side of the formula (2.49) do
not depend on the function v(r, t). So from the properties of composition and the
integral, it immediately follows that these terms belong to C2(Q). Let us now study
the belonging to a certain class of the third term of second member of the formula
(2.49). Given the conditions (2.37)-(2.40) on the function f1 and like vn → v

following the norm of first member of the inequality (2.24) then the sequences of
functions ∫ t

0

F1n (hi(gi(r, t), τ)) .h
′
i(gi(r, t), τ).

∂gi
∂r√

Â2 (hi(gi(r, t), τ), τ)

4
+ 1

dτ ∈ C1(Q); i = 1, 2

converge according to the norm of the space C1(Q) towards the functions∫ t

0

F1 (hi(gi(r, t), τ)) .h
′
i(gi(r, t), τ).

∂gi
∂r√

Â2 (hi(gi(r, t), τ), τ)

4
+ 1

dτ ∈ C1(Q); i = 1, 2.

By virtue of this, we conclude that the third term belongs to C2(Q) and therefore
v(r, t) ∈ C2(Q). A simple transfer of v in the equation and in the conditions
proves that it is a classical solution of the mixed problem (2.16)-(2.18). Which
proves the theorem. □

2.3. Existence of the classical weakened solution on the axis of the third cen-
trally symmetric mixed problem for the three-dimensional non-homogeneous
general hyperbolic equation of the second-order. In the cylinder P for the non-
homogeneous equation (1.1), let us pose the following problem: define in P the
solution u(x, t) of this equation belonging to the class of functions C2

{r=0}(P ) which
satisfy the initial conditions (1.2) and the boundary condition of the third type
(1.3).

Definition 2.2. By classical solution weakened on the axis r = 0 of the mixed problem
(1.1), (1.2), (1.3), we will understand the class function C2

{r=0}(P ) transforming
the equation (1.1) into an identity in the open cylinder with lateral axis r = 0

(C \ {0} × [0, T ]) and checking the conditions (1.2), (1.3) in the usual sense.

The problem thus posed solves the following:



ON THE EXISTENCE AND UNIQUENESS OF THE WEAKENED CLASSICAL SOLUTION ... 361

Theorem 2.2. For the existence (of the unique) weakened classical solution u(x, t)

on the axis |x| = r = 0 of the third mixed problem (1.1), (1.2), (1.3)

u(x, t) =
Φ (h2 (g2(|x|, t), 0)) + Φ (h1(g1(|x|, t), 0))

2|x|

+
1

2|x|

∫ h2(g2(|x|,t),0)

h1(g1(|x|,t),0)

Ψ(ξ) +
Â

2
(ξ, 0)Φ′(ξ)√

Â2

4
(ξ, 0) + 1

 dξ

+
1

2|x|

∫ t

0

∫ h2(g2(|x|,t),ξ)

h1(g1(|x|,t),ξ)

 F1(ξ, τ)√
Â2

4
(ξ, τ) + 1

 dξdτ

(2.51)

it is necessary and sufficient that the initial functions φ and ψ satisfy all the require-
ment (2.20), (2.21) and the right hand side f of the equation (1.1) satisfies the
following conditions

(2.52) f(x, t) ∈ C (P \ {0} × [0, T ]) ,

(2.53) lim
|x|→0

f1(|x|, t) = 0, 0 ≤ t ≤ T,

(2.54) f(x, t)∣∣
Γ

= 0,

(2.55)
∫ t

0

f1 (h1(g1(|x|, t), 0), τ) dτ ∈ C1(Q),

(2.56)
∫ t

0

f1 (h2(g2(|x|, t), 0), τ) dτ ∈ C1(Q).

By the symbols Φ, Ψ , F1, f1, we have designated the respective extensions func-
tions Φ, Ψ , F1, f1 whose extension structure was defined in §2.2.

The uniqueness observed here of the solution arises from the energy type in-
equality that we will construct subsequently.

Proof. Consider further the following sets: E1 Banach space which is the com-
pleteness of the set of functions D0, E2 = W 2

2,0(0, R) ×W 1
2,0(0, R); E3 = C ([0, T ],

W 1
2,0(0, R)

)
×W 2

2,0(0, R)×W 1
2,0(0, R); E5, are Hilbert spaces; E4 Banach space which
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is the completeness of the set of functions D3. E6(0, R) and E7(0, R) designate the
Hilbert spaces that we obtain by the completeness of the sets D5 and D6 according
to the norms of Sobolev spaces W 2

2 (0, R) and W 1
2 (0, R).

Suppose that for the functions φ and ψ the conditions (2.20) and (2.21) are ver-
ified, and the function f verifies the conditions (2.52)-(2.56) . Let us demonstrate
that if the required conditions are verified, there exists the classical weakened so-
lution u(x, t) on the axis r = 0 of the mixed problem (1.1), (1.2), (1.3). It is
defined by the formula (2.51). For this, it is sufficient to demonstrate that the
mixed problem (2.1), (2.2), (2.3) in Q admits the solution

u(r, t) =
Φ (h2 (g2(r, t), 0)) + Φ (h1(g1(r, t), 0))

2r

+
1

2r

∫ h2(g2(r,t),0)

h1(g1(r,t),0)

Ψ(ξ) +
Â

2
(ξ, 0)Φ′(ξ)√

Â2

4
(ξ, 0) + 1

 dξ

+
1

2r

∫ t

0

∫ h2(g2(r,t),ξ)

h1(g1(r,t),ξ)

 F1(ξ, τ)√
Â2

4
(ξ, τ) + 1

 dξdτ

(2.57)

which belongs to the function class C1(Q) ∩ C2((0, R] × [0, T ]) and checks the
conditions (2.9)-(2.11), if the conditions (2.20) and (2.21) are verified as well as
the condition

(2.58) f(r, t) ∈ C ((0, R]× [0, T ]) ,

(2.59) lim
r→0

f1(r, t) = 0, 0 ≤ t ≤ T,

(2.60) lim
r→R

f(r, t) = 0, 0 ≤ t ≤ T,

(2.61)
∫ t

0

f1 (h1(g1(r, t), 0), τ) dτ ∈ C1(Q),

(2.62)
∫ t

0

f1 (h2(g2(r, t), 0), τ) dτ ∈ C1(Q).
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By changing the variable (2.13) in the mixed problem (2.1), (2.2), (2.3) , of the
unknown function u, we then obtain the auxiliary problem (2.16), (2.17), (2.18)
not containing a singularity with the boundary condition of the first type on the
limit r = 0 and the boundary condition of the second type on the edge r = R.

Subsequently, let us carry out the proof following the diagram exposed during
the proof of the sufficiency of Theorem (see KOLANI [2]). We have the following
result

Lemma 2.4. For the solution v(r, t) ∈ D0 of the mixed problem (2.16), (2.17),
(2.18) for the non-homogeneous equation with initial functions Φ(r) ∈ D1, Ψ(r) ∈
D2 and the right hand side f1(r, t) ∈ D3, we have the following inequality:

sup
0≤t≤T

{∫ R

0

[(
∂2v

∂r2

)2

+

(
∂v

∂r

)2

+ v2 +

(
∂2v

∂r∂t

)2

+

(
∂v

∂t

)2
]
dr

}

≤ c3

∫ R

0

[(
d2Φ

dr2

)2

+

(
dΦ

dr

)2

+ Φ2 +

(
dΨ

dr

)2

+ Ψ 2

]
dr

+ c4

∫ T

0

∫ R

0

[(
∂f1
∂r

)2

+ f 2
1

]
drdt

(2.63)

where the constants c3 and c4 do not depend on v, Φ and Ψ and are defined by the
formula (2.25), the constant M by the formula (2.26).

From the a priori energy inequality (2.63) follows the uniqueness of the solution
of the mixed problem (2.16), (2.17), (2.18).

By the symbol E3 let us designate the Hilbert space which is made up of all the
elements F = {f1, Φ, Ψ} for which Standard

||F||E3 =
(
c3

(
||Φ||2W 2

2 (0,R) + ||Ψ ||2W 1
2 (0,R)

)
+ c4|||f1|||2

) 1
2

where |||f1|||2 =
∫ T

0

∫ R

0

((
∂f1
∂r

)2

+ f 2
1

)
drdt, is finished.

By the symbol E1 let us first designate the Banach space defined at the beginning
of our demonstration as well as D(L ).
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Lemma 2.5. For any function v ∈ D(L ) satisfying the equation (2.16) and the
conditions (2.17), (2.18), we have the following inequality:

(2.64) ||v||2E1
≤ ||F||2E3

.

Proof. The sets D1, D2, D3 are dense in the sets designated by the relations (2.22),
(2.23) and D3 =

{
f1(r, t) ∈ C1(Q) : f1(0, t) = f1(R, t) = 0

}
respectively. Then the

inequality (2.63) remains true and for any function v(r, t) ∈ D(L ) and from the
fact that such a function can be approximated in the norm C2(Q) by the functions
D0 verifying the equation (2.16) and the conditions (2.17), (2.18) and the asser-
tion of the lemma follows immediately from the completeness according to the
norms E1 and E3 of the inequality (2.63). □

Let the operator L have the domain of definition D(L) defined at the start of the
demonstration and acting according to the law

Lv ≡

{
L v, v∣∣

t=0

,
∂v

∂t
∣∣
t=0

}
: E1 −→ E3.

It is clear that the operator L admits a completeness (see for example Radino and
Yurchuk [5] page 338) which we designate by L.

Definition 2.3. The solution of the equation

(2.65) Lv = F , F ∈ E3,

will be called a highly generalized solution of the mixed problem (2.16), (2.17),
(2.18).

Lemma 2.6. Suppose that the conditions of lemma 2.5 are verified, then for any
function v ∈ D(L), we have the inequality

(2.66) ||v||2E1
≤ ||Lv||2E3

.

Proof. If in the first and second mixed problem (respectively on the limit r = 0 and
the limit r = R) (2.16), (2.17), (2.18) we match the operational equation

(2.67) Lv = F
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from Lemma 2.5, it follows that for any function v belonging in the set E1 to the
set D(L), we have the following inequality

(2.68) ||v||E1 ≤ ||Lv||E3 .

Passing to the limit and tending the inequality (2.68) to the strongly generalized
solution, as a result we obtain the inequality (2.66). Which proves lemma 2.6. □

We have the following assertion.

Lemma 2.7. If the conditions of lemma 2.6 are verified, then for F ∈ E3 there
exists a unique strongly generalized solution

v = (L)−1F = (L−1)F

of the mixed problem (2.16), (2.17), (2.18) which verifies the inequality (2.66).

It is sufficient to demonstrate that the set of values R(L) the operator L is dense
in E3. That is, for a certain element V = {g1, Φ1, Ψ1} ∈ E3 and for any function
v ∈ D(L) we have the following equality:

(Lv, V )E3
= (L v, g1)C([0,T ], W 1

2,0(0,R)) +

(
v∣∣

t=0

, Φ1

)
W 2

2 (0,R)

+

(
∂v

∂t
∣∣
t=0

, Ψ1

)
W 1

2 (0,R)

= 0.

(2.69)

The proof for V ≡ 0 follows from the details of the extension method following a
parameter exposed during the proof of Theorem 2 of the article [5].

Investigations of the regularity of the strongly generalized solution v based on
the results of the article [1] (see § 3.2) show that the strongly generalized solution
of the mixed problem (2.16), (2.17), (2.18) is of the form

+
1

2

∫ h2(g2(r,t),0)

h1(g1(r,t),0)

Ψ(ξ) +
Â

2
(ξ, 0)Φ′(ξ)√

Â2

4
(ξ, 0) + 1

 dξ(2.70)
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+
1

2

∫ t

0

∫ h2(g2(r,t),ξ)

h1(g1(r,t),ξ)

 F 1(ξ, τ)√
Â2

4
(ξ, τ) + 1

 dξdτ

and is a classical solution, i.e. belongs to C2(Q).

The demonstration according to which the function u(r, t) =
v(r, t)

r
where v(r, t)

is defined by the formula (2.70) is a classic solution weakened on the axis r =

0 of the mixed problem (1.1), (1.2), (1.3) differs very little from the research
carried out during the demonstration of the sufficiency of theorem of the article
[2]. Which demonstrates sufficiency.

The necessity of the conditions (2.20), (2.21) on the functions φ and ψ is
demonstrated in an analogous way as in the case of the homogeneous equation
(see Theorem [2]).

The differentiation according to the variables x and t of the formula (2.51) es-
tablishing the weakened classical solution u(x, t) on the axis r = 0, demonstrates
the necessity of the conditions (2.55), (2.56) for the function f . From the equa-
tion (1.1) and the fact that the solution u(x, t) belongs to the class C2

{r=0}(P ) and
that the coefficients ai, bi, verify the conciliation conditions (1.6), it follows the
necessity of the conditions (2.52)-(2.54).

Therefore, if the function u(x, t) defined by the equality (2.51) is a weakened
classical solution on the axis r = 0 of the mixed problem (1.1), (1.2) , (1.3) then
the functions φ and ψ check the conditions (2.20),(2.21) and the function f checks
the conditions (2.52)-(2.56). Which proves the theorem 2.2. □

2.4. Uniqueness of the weakened classical solution on the axis of the third
centrally symmetric mixed problem for the three-dimensional nonhomoge-
neous general hyperbolic equation of the second order. If the classical weak-
ened solution u(x, t) on the axis r = 0 of the third mixed problem (1.1), (1.2),
(1.3) exists, then it is unique.
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In other words, the strongly generalized solution v(r, t) = ru(r, t) verifies the
energy inequality a priori

sup
0≤t≤T

{∫ R

0

[(
∂2v

∂r2

)2

+

(
∂2v

∂t2

)2

+

(
∂v

∂r

)2

+v2 +

(
∂2v

∂r∂t

)2

+

(
∂v

∂t

)2
]
dr

}

≤ d

{∫ R

0

[(
d2Φ

dr2

)2

+

(
dΦ

dr

)2

+ Φ2 +

(
dΨ

dr

)2

+ Ψ 2

]
dr

+

∫ T

0

∫ R

0

(
∂f1
∂r

)2

drdt+ sup
0≤t≤T

∫ R

0

f 2
1dr

}
(2.71)

Here the constant d does not depend on v, Φ, Ψ and f1. From the inequality (2.71)
flows the uniqueness of the highly generalized solution v(r, t) and therefore of the
weakened classical solution u(r, t) on the axis r = 0 of the third mixed problem
(1.1), (1.2), (1.3).
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