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ADJUNCTION OF ROOTS TO PROFINITE GROUPS

G. Mantika1, R.M. Fomekong Ndjouo, and D. Tieudjo

ABSTRACT. In this paper, when G′ is a group obtained by adjoining a nth-root of
g to a given group G, where n is a nonzero natural number and g is an element of
G of infinite order, we compute the profinite completion Ĝ′ of G′. Also, given G a
profinite group in which any subgroup of finite index is open, n a nonzero natural
number, g an element of G, and x an element not belonging to G, we point out
necessary and sufficient condition under which the group obtained by adjoining
roots to the profinite group G remains again profinite. Our proofs make use of
theoretico-combinatorial methods.

1. INTRODUCTION AND RESULTS

We recall that a profinite groupG is a topological, compact, Hausdorff and totally
disconnected group. Any profinite group is isomorphic to a closed subgroup of a
direct product of finite groups. So, profinite groups are very large. They are very
rich since they have algebraic and topological properties. Today, profinite groups
have been generalized to pro-C groups and free pro-C constructions, where C is a
class of groups which is closed under taking subgroups, quotients and isomorphic
images. When C is the class of all finite groups, all finite p-groups, all solvable
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groups and all finite nilpotent groups, then we talk about profinite groups, pro-p
groups, pro-solvable groups and pro-nilpotent groups respectively. See [13, 16,
18].

Let G be a profinite group. When G is devoid with its topological structure, we
also denote by G the remaining group structure and we call it abstract group.

For any abstract group G, write NG for the set of all normal subgroups in G

with finite index. The profinite completion of G, denoted by Ĝ, is the inverse limit
of a projective system of finite groups, i.e., Ĝ = lim←−−−−

N∈NG

G/N , with NG a directed

set. Ĝ is a profinite group. See [13, 16, 18]. If the set NG is used as a basis
of neighbourhoods of the identity, the effect is to introduce a topology on G, the
profinite topology. Let G be an abstract group endowed with its profinite topology.
Then, for any subgroup H, the profinite closure H in G is the intersection of all
the subgroups in G of finite index that contain H. When the trivial subgroup is
closed for the profinite topology of the group G, we say that G is residually finite.
Equivalently, a group G is residually finite if for any g ̸= 1G there exists a normal
subgroup K of G of finite index not containing g. A subgroup H of G is finitely
separable if it is closed in the profinite topology of G. Equivalently, a subgroup
H of a group G is said to be finitely separable if for any element g not belonging
in the subgroup H, there exists a normal subgroup N of finite index such that
g /∈ NH. This means that, for any a ∈ G\H, there exists a homomorphism φ from
G onto a finite group such that φ(a) /∈ φ(H).

Equations over groups is an old and well-established area of group theory in
view of the abundant scientific production on the subject. See [1,6–9,11,14]. An
equation with the variable x over a group G is an equality of the form

w(x) = 1,(1.1)

where w(x) belongs in G ∗ ⟨x⟩, the free product of G and the cyclic group ⟨x⟩.
See [10,11]. There may or may not exist solution of equation (1.1) in G. If there
exists one, it need not be unique. If equation (1.1) does not have solution in G,
the question arises whether there is an over group H containing G in which this
equation has solution. When such group H exists, we say that equation (1.1)
is solvable over G. See [11]. Using the theory of generalized free product with
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amalgamation, B.H. Neumann studied conditions on G and w(x) such that equa-
tion (1.1) is solvable over G. He obtained that the over group H is generated by
a solution of (1.1) and elements of G. We say that H is obtained by adjoining a
solution of (1.1) to G. See [12].

Since B.H. Neumann introduced the first systematic investigation of the prob-
lem of adjoining roots to groups ( [12]), many authors have studied the subject in
different directions [1, 6, 8, 9, 11, 14]. L. Louder in [9] analyzed limit groups ob-
tained from other limit groups by adjoining roots. In [1], R.B.J.T. Allenby proved
that under some conditions a nilpotent group B of a given class can be embed-
ded in a group G having the same solubility lenght as B. A. Menshov and V.
Roman’kov studied embeddings to some unitriangular groups arising under ad-
junction of roots. See [11]. Recently, using a twisted group algebra, T. Law-
son constructively adjoined formal radicals in a symmetrical ∞-category. See [8].
In [12], B.H. Neumann also focused on a particular form of equation (1.1). That
is equation:

xn = g,(1.2)

where n is a positive integer and g is an element of a group G. Any solution of the
equation (1.2) is called a nth-root of g. Also, there may or may not exist a nth-root
of g in G. If g does not have a nth-root in G, again the question arises whether we
can adjoin one. More precisely, we pose the following question: given an element
g in a group G, does there exist a group G⋆ containing an isomorphic replica of G
(denoted again by G) as a subgroup such that in G⋆, g has a nth-root x? [10]. The
motivation for the study of adjunction of roots to groups goes back to the fact that
the affirmative answer to the previous question plays a role in the solution for the
word problem for groups with a single defining relation. See [10,12]. In [17], D.
Tieudjo proved that, given A a K-residual group for a root-class K and a nonzero
natural number n, the group G = A ⋆

g=xn
⟨x⟩, obtained by adjoining roots to A, is

K-residual if and only the infinite cyclic group < g > generated by element g is
K-separable in A.

B.H. Neumann proved (see [12]) that, given a group G, n a nonzero natural
number and an element g ∈ G, there exists exactly one group G⋆ with the follow-
ing properties:
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(1) G⋆ contains G and is generated by the elements of G and an additional
element x such that xn = g;

(2) all groups sharing property 1. with G⋆ are quotient groups of G⋆.

In this paper, when G′ is a group obtained by adjoining a nth-root of g to a given
group G, where n is a nonzero natural number and g is an element of G of infinite
order, we compute the profinite completion Ĝ′ of G′. That is:

Theorem 1.1. Let G be a group. Let n be a nonzero natural number and g an
element of G of infinite order such that xn = g. Let G′ = G ∗

<g>=<xn>
⟨x⟩ be the group

obtained by the adjunction of a nth-root x of g to G. If the following conditions are
satisfied:

(1) the cyclic group ⟨g⟩ is closed in the profinite topology on G, and
(2) the profinite topology onG′ induces the profinite topologies onG, ⟨x⟩, ⟨g⟩ and

⟨xn⟩, then G∗ = Ĝ
∐

<̂g>=<̂xn>

<̂ x >, the amalgamated free profinite product

of the profinite completions of G and ⟨x⟩.

In [7], the authors showed that under some conditions, by adjoining roots to
certains classes of conjugacy separable groups the resulting groups are again con-
jugacy separable groups. In this paper we investigate on profinite groups. We
obtain necessary and sufficient condition under which a group obtained by adjoin-
ing root to a profinite group remains again profinite. We prove:

Theorem 1.2. Let G be a profinite group in which any subgroup of finite index is
open, n a nonzero natural number, g an element ofG, and x an element not belonging
toG. Assume that the closures< g > and< xn > of the cyclic subgroups ⟨g⟩ and ⟨xn⟩,
in the respective profinite groups G and <̂ x >, are topologically isomorphic. Then
the following conditions are equivalent:

(1) ⟨g⟩ is closed in the profinite topology of G;
(2) there exists a unique profinite group G∗ containing G and x, in which g = xn.

Since in any finitely generated profinite group the open subgroups are sub-
groups of finite index, it follows that:

Corollary 1.1. Let G be a finitely generated profinite group, n a nonzero natural
number, g an element of G, and x an element not belonging to G. Assume that the
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closures < g > and < xn > of the cyclic subgroups ⟨g⟩ and ⟨xn⟩, in the respective
profinite groups G and <̂ x >, are topologically isomorphic. Then there exists a
unique profinite group G∗ = G

∐
<g>=<xn>

<̂ x > containing G and x, in which g = xn.

2. PRELIMINARY NOTIONS AND RESULTS

In this section, we recall definitions and properties of some notions we will use.
One can refer to [10,13] for more details.

2.1. Free groups.

Definition 2.1. Let X be a nonempty set. Let F (X) be a group and let l : X → F (X)

be a map. We say that the family (F (X), l) is a free group having basis X, or simply
F (X) is a free group on X, if for any map φ : X → G, where G is a group, there
exists a unique homomorphism φ̄ : F (X) → G such that the following diagram
commutes

X
l //

φ

''

F (X)

φ̄

��
G

For any abstract group G, write NG for the set of all normal subgroups in G

with finite index. The profinite completion of G, denoted by Ĝ, is the inverse limit
of a projective system of finite groups, i.e., Ĝ = lim←−−−−

N∈NG

G/N , with NG a directed

set. Ĝ is a profinite group. Particularly, when G is a free group on X denoted
F (X), every element of F (X) can uniquely be written as the product of finitely
many elements from X and X−1 = {x−1, x ∈ X}. In what follows, we compute
the profinite completion of a free group on a set X. That is:

Proposition 2.1. Let X be a nonempty set and let (F (X), l) be the free group having
basis X. Then:

(1) if X is finite, then the profinite completion of F (X) is the free profinite group
with basis the discrete space X;

(2) if X is discrete and infinite, then the profinite completion of F (X) is the free
profinite group with basis X ∪ {∗} the Alexandroff-compactification of the
discrete space X.
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Proof. X is a nonempty set. Then two cases arise:

(1) X is a discrete and finite set. Let N be the set of all normal subgroups of
finite index in F (X). Let F̂ (X) = lim←−−−

N∈N
F (X)/N be the profinite completion

of the abstract group F (X). Let j : F (X) → F̂ (X) be the canonical con-
tinuous homomorphism onto a dense subgroup of F̂ (X), where F (X) is
endowed with the profinite topology. Since X is a discrete space, the map
l : X → F (X) is continuous. Thus the composition ρ : X → F (X) → F̂ (X)

is continuous. Since the discrete and finite space X is profinite, let prove
that (F̂ (X), ρ) satisfies the universal property. Consider φ : X → H a
continuous map into a discrete and finite group H. F (X) is the free ab-
stract group with basis the set X. So there exists a unique homomorphism
φ0 : F (X) → H that extends φ. This situation is illustrated by the follow-
ing diagram

X
l //

φ
''

F (X)
j

//

φ0

��

F̂ (X)

φ0
ww

H

Since l and φ are continuous, so is φ0. By application of the universal prop-
erty of the profinite completion F̂ (X) to H, there is a unique continuous
homomorphism φ0 : F̂ (X) → H such that φ0j = φ0. Easily φ0jl = φ0l = φ

since φ0l = φ. Then F̂ (X) is the free profinite group with basis the discrete
space X.

(2) Now X is discrete and infinite. It holds automatically that X is a Hausdorff
and locally compact space. LetX∪{∗} be the Alexandroff-compactification
of X and let ω : X → X ∪ {∗} be a continuous map such that its corestric-
tion X → X is a homeomorphism. Consider F̂ (X) the profinite com-
pletion of the abstract group F (X) and j : F (X) → F̂ (X) the canonical
continuous homomorphism onto a dense subgroup of F̂ (X), where F (X)

is endowed with the profinite topology. Then F̂ (X) is the free profinite
group with basis X ∪{∗}. Indeed: let (Fp(X ∪{∗}), p) be the free profinite
group with basis X ∪ {∗}. On one hand, X ∪ {∗} is a pointed space and
the topological groups F (X) and F̂ (X) can be seen as pointed spaces with



ADJUNCTION OF ROOTS TO PROFINITE GROUPS 375

distinguished point the identity 1. See [13]. Then, let ω′ : X∪{∗} → F (X)

and let σ : X ∪ {∗} → F̂ (X) be continuous maps between these pointed
spaces such that σ(∗) = 1, ω′(∗) = 1, ω′ω = l, σω′ = j and σω = jl. By
the definition of Fp(X ∪ {∗}), there exists a unique continuous homomor-
phism ψ : Fp(X ∪ {∗}) → F̂ (X) satisfying ψp = σ. On the other hand,
the composition of continuous maps pω : X → X ∪ {∗} → Fp(X ∪ {∗})
is continuous. Therefore there exists a unique continuous homomorphism
ν : F (X) → Fp(X ∪ {∗}) with νl = pω. Thus, by the definition of the
profinite completion F̂ (X) of F (X), there exists a unique continuous ho-
momorphism φ : F̂ (X) → Fp(X ∪ {∗}) such that φj = ν. All this situation
is illustrated by the following commutative diagram

X
l //

ω ''

F (X)
j

//

ν

##

F̂ (X)

φ

��

X ∪ {∗}

p ))

σ

55

ω′

OO

Fp(X ∪ {∗})

ψ

OO

Then we have: ψφj = ψν = j = id
F̂ (X)

j. Since j(F (X)) is dense in

F̂ (X), it follows that ψφ = id
F̂ (X)

. Also, φψp = φσ = φjω′ = νω′ = p =

idFp(X∪{∗})p. We obtain from the fact that p(X ∪ {∗}) generates topologi-
cally Fp(X ∪ {∗}) that φψ = idFp(X∪{∗}). Thus φ is a topological isomor-
phism and the result is obtained.

□

Therefore, a profinite completion of a free group of finite rank is finitely gener-
ated.

2.2. Free product of groups with amalgamation.

Definition 2.2. Let H be a subgroup of a group G1 and let K be a subgroup of a
group G2 such that H is isomorphic to K through the isomorphism φ : H → K.
The free product of groups G1 and G2 amalgamating subgroups H and K through
the isomorphism φ is a group generated by the disjoint union of all the generators of
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groups G1 and G2, and defined by all the relators of groups G1 and G2, together with
all the relations of the form φ(h) = k, for all h ∈ H and k ∈ K.

Let G1 and G2 be two abstract groups, and let H and K be their respective
subgroups such that H is isomorphic to K through the isomorphism φ : H → K.
We denote byG = G1 ⋆

H=
φ
K
G2 (or simplyG = G1 ∗

H=K
G2 when there is no confusion)

the free product of groups G1 and G2 amalgamating isomorphic subgroups H and
K via the isomorphism φ. Relatively to the isomorphism φ, subgroups H and K

can be identified. We then write G1 ⋆
H
G2 the free product of groups G1 and G2

over subgroup H, meaning that H is the common subgroup of groups G1 and G2

(indeed, K = φ(H), where φ is the known isomorphism). See [10] for more
details.

An element g in G can be written in a form g = g1g2 · · · gr (r ≥ 1) where for
any i = 1, 2, · · · , r, element gi belongs to one of the free factor G1 or G2, and if
r > 1, any successive gi and gi+1 do not belong to the same factor G1 or G2 (nor
to the amalgamated subgroups H and K). We say that g is written in a reduced
form. In general, an element of the group G = G1 ∗

H=K
G2 can have more than one

reduced form. But any two reduced forms of an element g have the same number
of components, which we will call the length of the element g.

Also we have the following usefull notions.

Definition 2.3. Let G = G1 ⋆
H=

φ
K
G2 be the free product of groups G1 and G2 with

amalgamated subgroups H and K via the isomorphism φ.

(1) Let R and S be normal subgroups of finite index in groups G1 and G2 re-
spectively. The subgroups R and S are (H,K,φ)-compatible if the following
equality holds: φ(R ∩H) = S ∩K.

(2) A family (Ri)i∈I of subgroups of a group G is called a filtration if ∩
i∈I
Ri = {1}.

And the family (Ri)i∈I is a H-filtration if it is a filtration, and in addition we
have ∩

i∈I
HRi = H.

Concerning free profinite products of profinite groups with amalgamation, we
have according to [13]:

Definition 2.4. Let H be a closed subgroup of a profinite group G1 and let K be a
closed subgroup of a profinite group G2. Let σ : H → G1 and τ : K → G2 be the
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inclusion maps and let φ : H → K be an isomorphism of topological groups. The free
profinite product of the profinite groups G1 and G2 with amalgamated subgroups
H and K is a family (G,φ1, φ2) where G is a profinite group and φ1 : G1 → G,
φ2 : G2 → G are continuous homomorphisms satisfying:

(1) φ1σ = φ2τφ and
(2) If G′ is a profinite group with continuous homomorphims ψ1 : G1 → G′ and

ψ2 : G2 → G′ such that ψ1σ = ψ2φτ , then there exists a unique continuous
homomorphism ψ : G→ G′ such that ψφ1 = ψ1 and ψφ2 = ψ2.

We denote by G1

∐
H=K

G2 the free profinite product of the profinite groups G1 and G2

with amalgamated subgroups H and K.

Let G1 and G2 be two profinite groups with respective closed subgroups H and
K. A concrete free profinite product G of the profinite groups G1 and G2 with

amalgamated subgroups H and K can be obtained by taking G = ̂̃G = lim←−−−
N∈N

G̃/N =

̂G1 ∗
H=K

G2

N
, the profinite completion of G̃ with respect to N , where G̃ = G1 ∗

H=K

G2 is the free abstract product of G1 and G2 with amalgamated subgroups H
and K, considered as abstract groups and N = {N ◁f G = G1 ∗

H=K
G2 : N ∩

Gi is open in Gi, i = 1, 2}. See [13].
G1

∐
H=K

G2 is said to be proper if the continuous homomorphismsG1 → G1

∐
H=K

G2

and G2 → G1

∐
H=K

G2 are one to one. There are examples of free profinite product

of profinite groups with amalgamated subgroups which are not proper. See [13].

3. PROOF OF RESULTS

3.1. Proof of Theorem 1.1. When considering the root class consisting of all fi-
nite groups, then the characterization of residually finite group after a nth-root has
been adjoined to it obtained by D. Tieudjo in [17, Theorem 3.4] can be rewritten
as follow:

Lemma 3.1. [17, Theorem 5.1] Let G be a residually finite group. Let n be a nonzero
natural number and let g be an element of G of infinite order such that xn = g. The
group G′ = G ∗

<g>=<xn>
⟨x⟩ obtained after a nth- root has been adjoined to G is

residually finite if and only if the infinite cyclic subgroup ⟨g⟩ generated by g is closed
in the profinite topology of G.
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Let now prove Theorem 1.1.
Proof of Theorem 1.1. Assume that the cyclic group ⟨g⟩ is closed in the profinite

topology on G. Then G′ = G ∗
<g>=<xn>

⟨x⟩ is residually finite by Lemma 3.1. If

we assume in addition that the profinite topology on G′ induces on G, ⟨x⟩, ⟨g⟩
and ⟨xn⟩ their profinite topologies, then by [13], Ĝ′ = Ĝ

∐
<̂g>=<̂xn>

<̂ x >, that

is, the profinite completion Ĝ′ of G′ and the proper amalgamated free profinite
product of the profinite completions of G and ⟨x⟩ coincide. And Theorem 1.1 is
demonstrated.

3.2. Proof of Theorem 1.2. We first prove the following Lemma.

Lemma 3.2. Let G be a profinite group in which any subgroup of finite index is
open, n a nonzero natural number, g an element of G of infinite order and x an
element not belonging to G such that xn = g. Let < g > and < xn > be the closures
of the cyclic subgroups ⟨g⟩ and ⟨x⟩, in the respective profinite groups G and <̂ x >.
The abstract group G′ = G ∗

<g>=
φ
<xn>

⟨x⟩ is residually finite if, and only if so is

G∗ = G ∗
<g>=

φ
<xn>

<̂ x >.

Proof. Assume that G∗ = G ∗
<g>=

φ
<xn>

<̂ x > is residually finite. Let prove that G′ is

residually finite. Since ⟨x⟩ is residually finite, we get clearly that ⟨x⟩ ⊆ ⟨̂x⟩. Also,
the inclusions ⟨g⟩ ⊆ ⟨g⟩, ⟨xn⟩ ⊆ ⟨xn⟩ hold since ⟨g⟩ and ⟨xn⟩ are finitely generated
by Proposition 2.1, such that G′ can be viewed as a subgroup of G∗. Therefore G′

is residually finite as a subgroup of the residually finite group G∗.
Conversely, let G′ = G ∗

<g>=
φ
<xn>

⟨x⟩ be residually finite. Let establish that so is

the group G∗ = G ∗
<g>=

φ
<xn>

<̂ x >. By [13, Theorem 9.2.4] it follows that there

exist an indexing set Λ and the families of normal subgroups of finite index filtered
from below NG = {N1λ, λ ∈ Λ} and N<x> = {N2λ, λ ∈ Λ} ofG and ⟨x⟩ respectively,
which are simultaneously (⟨g⟩, ⟨xn⟩)-filtrations and (⟨g⟩ , ⟨xn⟩ , φ)-compatible.

Let NG = {N1λ;λ ∈ Λ} and N ⟨̂x⟩ = {N2λ;λ ∈ Λ} be the families obtained

by considering for any λ ∈ Λ, N1λ and N2λ to be the closure of N1λ and N2λ in
the respective profinite groups G and ⟨̂x⟩. By [5, Proposition 91], NG and N ⟨̂x⟩
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are families of normal subgroups of finite index in G and ⟨̂x⟩ respectively. NG

and N ⟨̂x⟩ are therefore basis of neighborhoods of the identities of the respective

profinite topologies on G and ⟨̂x⟩. Since any subgroup of finite index in G is open,
it follows that the profinite topology of G and the topology of G as profinite group
coincide. Consequently,

⋂
N1λ∈NG

N1λ = 1 using the fact that G is Hausdorff as

profinite group.
Similarly, the profinite group ⟨̂x⟩ is finitely generated by Proposition 2.1. There-

fore, its profinite topology and its topology as profinite group coincide. Thus,⋂
N2λ∈N ⟨̂x⟩

N1λ = 1 since ⟨̂x⟩ is Hausdorff as profinite group. We obtain then that the

families NG and N ⟨̂x⟩ are filtrations.

(1) Let prove that the families NG and N ⟨̂x⟩ are (⟨g⟩, ⟨xn⟩)-filtrations. It suf-

fices to prove that
⋂
λ∈Λ

N1λ⟨g⟩ = ⟨g⟩ and
⋂
λ∈Λ

N2λ⟨xn⟩ = ⟨xn⟩ since NG and

N ⟨̂x⟩ are already filtrations as seen previously. Now, recalling that ⟨g⟩ is a

closed subgroup of G and NG = {N1λ;λ ∈ Λ} a family of closed subsets of
G filtered from below, it follows that

⋂
λ∈Λ

N1λ⟨g⟩ = ⟨g⟩ by [13, Proposition

2.1.4].
Similarly,

⋂
λ∈Λ

N2λ⟨xn⟩ = ⟨xn⟩.

So that the families NG and N ⟨̂x⟩ are (⟨g⟩, ⟨xn⟩)-filtrations.

(2) Let now show that the families NG and N ⟨̂x⟩ are (< g >,< xn >,φ)-compatible.

That is, for any λ ∈ Λ, φ(N1λ ∩ ⟨g⟩) = N2λ ∩ ⟨xn⟩. Consider the following
commutative diagram:

⟨g⟩
φ

//

l1
��

⟨xn⟩

l2
��

⟨g⟩
φ

// ⟨xn⟩

We get the following identities:
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φ(N1λ ∩ ⟨g⟩) = φ(N1λ ∩ ⟨g⟩), since N1λ is open and then closed ;

= φ(N1λ ∩ ⟨g⟩), by [3, Lemma 3];

= φ(N1λ ∩ ⟨g⟩), since φ is an isomorphism between topological groups;

= φ(l1(N1λ ∩ ⟨g⟩)), since l1 is one to one using the fact that ⟨g⟩ is

residually finite as a free group ;

= l2 ◦ φ(N1λ ∩ ⟨g⟩), since φ ◦ l1 = i2 ◦ φ;

= l2(N2λ ∩ ⟨xn⟩), since φ(N1λ ∩ ⟨g⟩ = N2λ ∩ ⟨xn⟩ ;

= N2λ ∩ ⟨xn⟩, since l2 is one to one using the fact that ⟨xn⟩ is residually

finite as a free group ;

= N2λ ∩ ⟨xn⟩, by [3, Lemma 3];

= N2λ ∩ ⟨xn⟩, since N2λ is open and then closed .

Thus, φ(N1λ ∩ ⟨g⟩) = N2λ ∩ ⟨xn⟩. And the families NG and N ⟨̂x⟩ are

(⟨g⟩, ⟨xn⟩, φ)-compatible.
Finally, the families NG and N ⟨̂x⟩ are simultaneously (⟨g⟩, ⟨xn⟩)-filtrations

and (⟨g⟩, ⟨xn⟩, φ)-compatible. Consequently, G∗ is residually finite by [2,
Proposition 2] and Lemma 3.2 is proven.

□

We are now ready to prove Theorem 1.2.
Proof of Theorem 1.2. Let G be a profinite group in which any subgroup of finite

index is open, n a nonzero natural number, g an element of G, and x an element
not belonging to G. Let φ : < g > → < xn > be the topological isomorphism
between the closures < g > and < xn > of the cyclic subgroups < g > and < x >,
in the respective profinite groups G and <̂ x >.

(1) Suppose that < g > is closed in the profinite topology of G. Let show
that there exists a unique profinite group G∗ containing G and x, in which
xn = g. To do it we will give an explicite construction of such group G∗.

Let G′ = G ⋆
<g>=<xn>

<̂ x > be the free abstract product of the groups G

and <̂ x > with amalgamated subgroups < g > and < xn >, considering
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here that the groups are devoid with their topological structures. Set

N ={N ◁f G
′ : gN ∩G is open in G, and gN ∩ <̂ x >

is open in <̂ x >, for all g ∈ G′},

and G∗ = lim←−−−
N∈N

G′/N . Let show that G∗ = G
∐

<g>=<xn>

<̂ x > = Ĝ′ is

the desired profinite group. Considering that the abstract group G′ =

G ⋆
<g>=<xn>

<̂ x > is endowed with the profinite topology, the canonical

maps i1 : G → G′, i′1 : < g > → G, i2 : <̂ x > → G′, i′2 : < xn > → <̂ x >

and θ : G′ → G∗ given by the definition of the profinite completion Ĝ′ = G∗

of group G′, are continuous. Therefore i1, i2 and θ induce the continuous
homomorphism l1 = θ ◦ i1 : G→ G∗ and l2 = θ ◦ i2 : <̂ x >→ G′.

LetK be a profinite group with continuous homomorphisms ψ1 : G→ K

and ψ2 : <̂ x > → K such that ψ1i
′
1 = ψ2i

′
2φ. This situation is illustrated

by the following commutative diagram:

< g >

i′1

��

φ
// < xn >

i′2
��

G

l1

%%

i1 //

ψ1

��

G′ = G ⋆
<g>=<xn>

<̂ x >

θ

��

<̂ x >

l2

yy

i2oo

ψ2

��

G
∐

<g>=<xn>

<̂ x >

ψ

��
K

Let determine a unique continuous homomorphism ψ : G∗ → K such
that ψl1 = ψ1 and ψl2 = ψ2.
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By the universal property applied to the amalgamated product G′, it
comes that there exists a unique homomorphism λ : G∗ → K satisfying
the equalities λi1 = ψ1 and λi2 = ψ2. It is easily seen that λ is continuous.

Using now the fact that G
∐

<g>=<xn>

<̂ x > is the profinite completion of

G ⋆
<g>=<xn>

<̂ x >, it follows that there exists a unique continuous homo-

morphism ψ : G
∐

<g>=<xn>

<̂ x > → K such that λ = ψθ. Clearly, we have

the equalities ψl1 = ψ1 and ψl2 = ψ2. Indeed: ψ1 = λi1 = ψθi1 = ψl1 and
ψ2 = λi2 = ψθi2 = ψl2.

Thus, G∗ = G
∐

<g>=<xn>

<̂ x >.

Let now show that the profinite group G∗ = G
∐

<g>=<xn>

<̂ x > contains

G and x. It suffices to prove that the amalgamated free profinite product
G∗ is proper.

Since G is profinite, it is residually finite. And the amalgamated product
G ∗
<g>=<xn>

< x > is residually finite using the fact that the cyclic group

< g > is closed in the profinite topology of G. Thus, the abstract group
G′ = G ∗

<g>=<xn>
<̂ x > is residually finite by Lemma 3.2. Consequently,

the homomorphism θ : G ∗
<g>=<xn>

<̂ x >→ G
∐

<g>=<xn>

<̂ x > is one to one.

And by [13, Theorem 9.2.4] the amalgamated free profinite product G∗ is
proper. Thus, G∗ contains G and x, and we have xn = g. The unicity of G∗

is given by this specific construction.
(2) Conversely, assume that there exists a unique profinite group G∗ contain-

ing G and x, in which g = xn. Let prove that < g > is closed in the
profinite topology of G. We shall establish that the amalgamated abstract
free product G′ = G ∗

<g>=<xn>
<̂ x > is residually finite and conclude by

Lemma 3.2. So, let 1 ̸= g′ ∈ G′. g′ can be written in the reduced
form as g′ = g′1x

ε1
i1
· · · g′mxεmim with g′j ∈ G, xij ∈ <̂ x >, εj = ±1 for any

j ∈ {1, · · · ,m}, m ≥ 1, and if m > 1, any successive g′j and xij do not
belong to the same factor G or <̂ x > (nor to the amalgamated subgroups
< g > and < xn >.
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We need to determine a subgroup N of G′ of finite index such that g′ /∈
N .

First, assume that m = 1. Then g′ ∈ G or g′ ∈ <̂ x >.
Let g′ ∈ <̂ x >. By hypotesis G∗ = G

∐
<g>=<xn>

<̂ x > contains G and x.

Thus, the canonical homomomorphisms l1 : G → G∗ and l2 : <̂ x > → G∗

are one to one. Consequently, the amalgamated free profinite product
G∗ is proper. Therefore, again by [13, Theorem 9.2.4], there exist an
indexing set Λ and the families of normal subgroups of finite index fil-
tered from below NG = {N1λ, λ ∈ Λ} and N<̂x> = {N2λ, λ ∈ Λ} of G
and <̂ x > respectively, which are simultaneously (⟨g⟩, ⟨xn⟩)-filtrations and
(< g >,< xn >,φ)-compatible. Since the profinite group <̂ x > is residu-
ally finite, it follows that there exists µ ∈ Λ such that g′ /∈ N2µ. Set

P =
G

N1µ

∗
< g >N1µ

N1µ

=
< xn >N2µ

N2µ

<̂ x >

N2µ

.

The canonical homomomorphisms G→ G

N1µ

and <̂ x >→ <̂ x >

N2µ

extends

to the homomorphism θ : G′ → P with θ(g′) = g′N2µ ̸= N2µ, clearly onto.
Since P is residually finite by [ [2], Theorem 2.] as an amalgamated free
product of finite groups, it contains a subgroup N ′ of finite index satisfying
θ(g′) /∈ N ′. Thus, N = θ−1(N ′) is a subgroup N of G′ of finite index such
that g′ /∈ N and G′ is residually finite.

We prove similarly that, if g′ ∈ G, then G′ is residually finite.
Assume now that m > 1. Then, for any j ∈ {1, · · · ,m}, g′j ∈ G \ < g >

and xεjij ∈ <̂ x >\< xn >. Again using the fact that G∗ = G
∐

<g>=<xn>

<̂ x >

contains G as subgroup and x as element, it follows that the homomor-
phisms l1 : G → G∗ and l2 : <̂ x > → G∗ are one to one. And again, the
free amalgamated product G∗ is proper. Also, by [13, Theorem 9.2.4],
there exist an indexing set Λ and the families of normal subgroups filtered
from below NG = {N1λ, λ ∈ Λ} and N<̂x> = {N2λ, λ ∈ Λ} of finite in-
dex of NG and N<̂x> which are simultaneously (⟨g⟩, ⟨xn⟩)-filtrations and
(< g >,< xn >,φ)-compatible. Using now the fact that < g > and < xn >
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are respective closed subgroups of G and <̂ x >, it follows by [13, Propo-
sition 2.1.4] that < g > = ∩λ∈Λ< g >N1λ and < xn > = ∩λ∈Λ< xn >N2λ.
Thus, there exists λ ∈ Λ satisfying g′j /∈ < g >N1λ and x

εj
ij
/∈ < xn >N2λ.

Consequently, ψ(g′) = g′1N1λx
ε1
i1
N2λ . . . g

′
mN1λx

εm
im
N2λ ̸= 1 where

ψ : G∗ → G

N1λ

∗
< g >N1λ

N1λ

=
< xn >N2λ

N2λ

<̂ x >

N2λ

is the homomorphism induced by the canonical homomorphismsG→ G

N1λ

and <̂ x >→ <̂ x >

N2λ

. Since
G

N1λ

∗
< g >N1λ

N1λ

=
< xn >N2λ

N2λ

<̂ x >

N2λ

is residually

finite as an amalgamated free product of finite groups, it follows that it
contains a subgroup N ′ of finite index such that ψ(g′) /∈ N ′. Also, ψ is a
homomorphism which is onto. Indeed, if g′1N1λx

ε1
i1
N2λ . . . g

′
mN1λx

εm
im
N2λ ∈

G

N1λ

∗
< g > N1λ

N1λ

=
< xn > N2λ

N2λ

<̂ x >

N2λ

, then we clearly obtain

ψ(g′1x
ε1 · · · g′mxεmim ) = g′1N1λx

ε1
i1
N2λ · · · g′mN1λx

εm
im
N2λ.

N = ψ−1(N ′) is a subgroup of G′ of finite index with g′ /∈ N , and G′ is
residually finite. Theorem 1.2 is demonstrated.

Any profinite group containing G and x in which g = xn, is a quotient group of
such G∗. That is:

Remark 3.1. LetG be a profinite group in which any subgroup of finite index is open,
n a nonzero natural number, g an element of G and x an element not belonging to
G. Assume that the closures < g > and < xn > of the cyclic subgroups < g > and
< x >, in the respective profinite groups G and <̂ x >, are topologically isomorphic.
If < g > is closed in the profinite topology of G, then any profinite group containing
G and x in which g = xn, is a quotient group of G∗.

Indeed: Let F be a profinite group containing the profinite group G as a closed
subgroup, and let x be such that in F we have g = xn. Let determine a continuous
homomorphism φ : G∗ → F which is onto.
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Since F contains G and x, and in F we have g = xn, it follows that there exists
an onto homomorphism ψ : G′ → F using the definition of G′(as abstract group).
Using also the fact that F is a profinite group and G∗ = Ĝ′, it follows by [13, Lemma
3.2.1] that there exists a unique continuous homomorphism φ : G∗ → F such that
φ ◦ j = ψ, where j is the canonical continuous homomorphism between G′ and G∗.
This situation can be illustrated by the following commutative diagram:

G′
j

//

ψ

  

G∗

φ

��
F

Since ψ = φ ◦ j is onto, so is φ. Consequently F is the quotient of G∗.
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