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EQUALITY BETWEEN THE ALGEBRAS OF DIFFERENTIAL OPERATORS AND
ENDOMORPHISMS IN FINITE DIMENSION

Sama Anzoumana1 and Konan M. Kouakou

ABSTRACT. In this paper, we show that in characteristic zero, the condition finite
local k−rational is not necessary for the algebra of differential operators on a
commutative and unitary k−algebra to be equal to that of endomorphisms. But
the finite dimension is necessary for the algebra of differential operators to be an
algebra of finite dimension.

1. INTRODUCTION

Let A be a commutative and unitary algebra over characteristic field k. Differen-
tial operators on a given A−module M was introduced in 1967 by A. Grotendieck
in [1].

In 1992 R. C Canning and M. P Holland discovered in [5] that, in characteristic
zero, the finite local k−rational condition is sufficient for the algebra of differential
operators on a k−algebra to be equal to that of endomorphisms.

In this paper, we show that this condition is not necessary to get this equality.
But the finite dimension is necessary for the algebra of differential operators to be
an algebra of finite dimension.
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This paper is organized as follow: in section 2, we give some definitions, nota-
tions, basics properties and theorems of differential operators, tensor product and
finite locale k−rational.

In section 3, we first demonstrate that it is necessary for the dimension of the
algebra to be finite for the algebra of differential operators to be of finite dimen-
sion. Morever, we use the properties of the tensor product of algebras to construct
a two-sided ideal of tensor product of two algebras. This allows us to prove that:

the tensor product of two finite local k−rational algebras is not necessarily a finite
local k−rational algebra.

Then, thanks to our results on the tensor product of algebras of differential
operators in [2], we prove that: for all finite local k−rational algebras, A1, · · · , An,

D(A1 ⊗ A2 ⊗ · · · ⊗ An) = Endk(A1 ⊗ · · · ⊗ An).

We deduce from this theorem that the finite local k−rational condition is not nec-
essary so that in finite dimension, the algebras of the operators differentials and
endomorphisms coincide. Finally, using this result, we construct k−algebras A for
which we have D(A) = Endk(A).

2. PRELIMINARIES

In this part, we give some definitions, notations basics properties and theorems
of differential operators, tensor product and finite local k−rational.

Definition 2.1 (A ring of differential operators). Let A be a commutative algebra
over a field k. A ring of differential operators D(A) on A is defined as:

D(A) =
⋃
n∈N

Dn(A),

where

D0(A) = {u ∈ Endk(A) : [u, a] = ua− au = 0,∀a ∈ A} ≃ EndA(A)

and

Dn(A) = {u ∈ Endk(A) : [u, a] = ua− au ∈ Dn−1(A), for all a ∈ A},



ALGEBRAS OF DIFFERENTIAL OPERATORS AND ENDOMORPHISMS IN FINITE DIMENSION 389

ua and au are elements of Endk(A) defined by:

∀x ∈ A, ua(x) = u(ax) and au(x) = a(u(x)).

All element u ∈ Dn(A) is called differential operator of order n.

Proposition 2.1. ( [3])

(1) idA ∈ D(A) and D0(A) is identified to A by:a → φa : x : 7→ ax.
(2) Endk(A) is a (D(A),D(A))−bimodule.
(3) let n ≥ 0 be an integer, Dn(A) is a (A,A)-subbimodule of Endk(A)

(4) D(A) is a (A,A)−subbimodule of Endk(A).
(5) D(A) is a subalgebra of Endk(A).

Proposition 2.2. ( [4]) Let M and N be two A−modules.

(1) If (mi)i∈I and (nj)j∈J are two generating families of M and N respectively,
(mi ⊗ nj)i∈I;j∈J is a generating family of M ⊗N .

(2) Furthermore assume that M and N are two free A−modules. If (mi)i∈I and
(nj)j∈J are two bases of M and N respectively, then (mi⊗nj)i∈I;j∈J is a basis
of M ⊗A N .

Proposition 2.3. ( [4]) Let R be a ring, A and B two R−algebras. There ex-
ist on the R−module A ⊗R B an unique R−algebra structure such that: for all
((a, b), (a′, b′2, (a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′. The R−algebra A⊗R B is called the tensor
product of the R−algebras A and B.

Theorem 2.1. ( [2]) For all algebras A and B, of finite type on a field k of charac-
teristic p ≥ 0, D(A)⊗D(B) ≃ D(A⊗B).

Definition 2.2. (A finite local k−rational algebra) An algebra A on a field k of
characteristic zero is called finite local k−rational algebra when it is a k−vector space
of finite dimension possessing a nilpotent element whose nilpotence index is equal to
its dimension.

Example 1. R[x]
(x2)

is R−finite local k−rational algebra.

Theorem 2.2. ( [5]) Let A be an algebra on a field k of characteristic zero. If A is
finite local k−rational, D(A) = Endk(A).
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3. COINCIDENCE OF ALGEBRAS OF DIFFERENTIAL OPERATORS AND

ENDOMORPHISMS

In this part, we show that the finite local k−rational condition is not necessary so
that in finite dimension, the algebras of differential operators and endomorphisms
coincide.

Therefore, The algebras of differential operators on a k−algebra A which is a
subalgebra of Endk(A) is finite dimension. The proposition below indicates the
converse is true.

Proposition 3.1. Let A be a commutative and unitary k−algebra. If D(A) is finite
dimension, then A is finite dimension.

Proof. Let n ∈ N \ {0} and A be a commutative and unitary k−algebra. Suppose
the dimension of D(A) is finite and equal to n. Then, D(A) admits a base. Let
(di)i∈1;n be a basis of D(A). For all x ∈ A, we have: x = φx(1).

Yet φx ∈ D(A), so there exists (αi)i∈1;n ∈ kn such that: x =
∑n

i=1 αi di(1). Thus,
the following (di(1))i∈1;n generates A.

It follows that the dimension of A is finite. □

In the following, A and B are finite local k−rational algebras of respective di-
mensions n and m such that: A = vect

(
(xi)i∈0;n−1

)
; B = vect

(
(yj)j∈0;m−1

)
, and

F = vect

(xi ⊗ yj
)

i∈0,n−1
j∈0,m−1
(i,j)̸=(0,0)

 .

Lemma 3.1. Let (A,+, .) be a commutative algebra on a field k and a1, · · · , ap be
non-zero elements of A. We have: for all n ∈ N∗,

(a1 + · · ·+ ap)
n =

∑
i1+···+ip=n

(
βi1 + · · ·+ ina

i1
1 · · · aipp

)
,

for all i1 + · · ·+ ip = n, βi1 + · · ·+ in ∈ k.

Proof. By induction on p ≥ 1. Let n ∈ N∗:

- p = 1, it is obvious.
- Now, assume that the result is true for an integer p ≥ 1 and prove it for
p+ 1.
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- We have

((a1 + · · ·+ ap+1)
n = (a1 + · · ·+ ap) + ap+1)

n

=
n∑

q=0

Cq
n(a1 + · · · ap)q(ap+1)

n−q

=
n∑

q=0

Cq
n

( ∑
i1+···+in=q

(βi1 + · · ·+ ina
i1
1 · · · aipp )

)
(ap+1)

n−q

=
∑

i1+···+ip+ip+1=n

βi1 + · · ·+ ina
i1
1 · · · aipp a

ip+1

p+1

And we have the lemma.

□

Lemma 3.2. F is a two-sided ideal of A⊗B.

Proof. According to Proposition 2.2, A⊗ B is an algebra of finite dimension equal
to mn and

A⊗B = vect

((
xi ⊗ yj

)
i∈0,n−1
j∈0,m−1

)
.

We have

(1) 0A⊗B ∈ F and F ⊂ A⊗B

(2) Let
z =

∑
i∈0,n−1
j∈0,m−1
(i,j)̸=(0,0)

αij(x
i ⊗ yj)

and
z′ =

∑
r∈0,n−1
t∈0,m−1
(r,t) ̸=(0,0)

βrt(x
r ⊗ yt)
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be elements of F . We have:

z − z′ =
∑

i∈0,n−1
j∈0,m−1
(i,j) ̸=(0,0)

αij(x
i ⊗ yj)

∑
r∈0,n−1
t∈0,m−1
(r,t)̸=(0,0)

βrt(x
r ⊗ yt)

=
∑

I∈0,n−1
J∈0,m−1
(I,J )̸=(0,0)

(αIJ − βIJ) (x
I ⊗ yJ)

Thus, z − z′ ∈ F .
(3) Let

z =
∑

i∈0,n−1
j∈0,m−1

αij(x
i ⊗ yj) ∈ A⊗B

and
z′ =

∑
r∈0,n−1
t∈0,m−1
(r,t)̸=(0,0)

βrt(x
r ⊗ yt) ∈ F

We have:

zz′ = α00z
′ +


∑

i∈0,n−1
j∈0,m−1
(i,j)̸=(0,0)

(αijx
i)⊗ yj




∑

r∈0,n−1
t∈0,m−1
(r,t) ̸=(0,0)

(βrtx
r)⊗ yt


yet α00z

′ ∈ F and
∑

i∈0,n−1
j∈0,m−1
(i,j)̸=(0,0)

(αijx
i)⊗ yj




∑

r∈0,n−1
t∈0,m−1
(r,t)̸=(0,0)

(βrtx
r)⊗ yt



=
∑

i∈0,n−1
j∈0,m−1
(i,j) ̸=(0,0)

((αijx
i)⊗ yj)


∑

r∈0,n−1
t∈0,m−1
(r,t)̸=(0,0)

(βrtx
r)⊗ yt
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=
∑

i∈0,n−1
j∈0,m−1
(i,j)̸=(0,0)


∑

r∈0,n−1
t∈0,m−1
(r,t) ̸=(0,0)

((αijx
i)⊗ yj)((βrtx

r)⊗ yt)



=
∑

i∈0,n−1
j∈0,m−1
(i,j)̸=(0,0)


∑

r∈0,n−1
t∈0,m−1
(r,t) ̸=(0,0)

(αijβrt)x
i+r ⊗ yj+t

 ∈ F

because for every fixed couple (i, j) and every couple (r, t) ∈ 0, n− 1 ×
0,m− 1, we have: (i+ r, j + t) ̸= (0, 0).

According to 1), 2) and 3), F is left-sided ideal of A⊗B. Since A⊗B is
a commutative algebra, then F is a two-sided ideal.

□

Theorem 3.1. The tensor product of two finite local k−algebras is not necessarily a
finite local k−algebra.

Proof. Let A and B be finite a local k−algebras of respective dimensions n and m

such that (n,m) ̸= (0, 0), A = vect
(
(xi)i∈0,n−1

)
and B = vect

(
(yj)j∈0,m−1

)
, where

xn = 0 and ym = 0.
According to Proposition 2.3, A ⊗ B is an algebra of finite dimension equal to

nm and A⊗B = ⟨xi ⊗ yj⟩ i∈0,n−1
j∈0,m−1

- Prove that for all z ∈ A⊗B, znm−1 = 0.

Case 1: z ∈ F = vect

(xi ⊗ yj) i∈0,n−1
j∈0,m−1
(i,j)̸=(0,0)


In this case,

z =
∑

i∈0,n−1
j∈0,m−1
(i,j)̸=(0,0)

αij(x
i ⊗ yj) =

∑
i∈0,n−1
j∈0,m−1
(i,j)̸=(0,0)

(αijx
i)⊗ yj.
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By setting eij = (αijx
i ⊗ yj, we obtain

z =
∑

i∈0,n−1
j∈0,m−1
(i,j)̸=(0,0)

eij.

By Lemma 3.1, we have:

znm−1 =
∑

∑
lij=mn−1

βij

∏
i∈0,n−1
j∈0,m−1
(i,j)̸=(0,0)

(eij)
lij



=
∑

∑
lij=mn−1

βij

∏
i∈0,n−1
j∈0,m−1
(i,j)̸=(0,0)

((αijx
i)⊗ yj)lij



=
∑

∑
lij=mn−1

βij

∏
i∈0,n−1
j∈0,m−1
(i,j)̸=(0,0)

(αij)
lij(xilij ⊗ yjlij)



=
∑

∑
lij=mn−1

βij

∏
i∈0,n−1
j∈0,m−1
(i,j)̸=(0,0)

(αij)
lij

∏
i∈0,n−1
j∈0,m−1
(i,j)̸=(0,0)

(xilij ⊗ yjlij)

 .

By setting λij = βij

∏
i∈0,n−1
j∈0,m−1
(i,j)̸=(0,0)

(αij)
lij , we obtain:

z =
∑

∑
lij=mn−1

i∈0,n−1
j∈0,m−1
(i,j)̸=(0,0)

λij

(
x
∑

ilij ⊗ y
∑

jlij
)
.

Since Sup{
∑

ilij,
∑

jlij} ≥ mn−1 and mn−1 ≥ Sup{m,n}, then x
∑

ilij ⊗
y
∑

jlij = 0, for all(i, j) ∈ 0, n− 1× 0,m− 1 where (i, j) ̸= (0, 0).
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It follows that zmn−1 = 0. Thus, for all z ∈ F , z is nilpotent with nilpo-
tency index strictly less than nm.

Case 2: z /∈ F , that’s to say

z =
∑

i∈0,n−1
j∈0,m−1

αij(x
i ⊗ yj) = α00 +

∑
i∈0,n−1
j∈0,m−1
(i,j)̸=(0,0)

αij(x
i ⊗ yj)

with α00 ∈ k \ {0}. By setting

z′ =
∑

i∈0,n−1
j∈0,m−1
(i,j)̸=(0,0)

αij(x
i ⊗ yj),

we obtain z′ ∈ F and z = α00 + z′.
- Show that for all t ∈ N, zt ̸= 0:

We have

zt = (α00 + z′t = αt
00 +

t∑
r=1

Cr
t α

t−r
00 (z′r.

Since F is an ideal of A⊗k B (by Lemma 3.2), then
t∑

r=1

Cr
t α

t−r
00 (z′r ∈ F,

which means that
∑t

r=1C
r
t α

t−r
00 (z′r /∈ k \ {0}.

Therefore z′ = αt
00 +

∑t
r=1C

r
t α

t−r
00 (z′r is different from 0A⊗kB. It follows

that: for all t ∈ N, zt ̸= 0. So, any elements z /∈ F is nilpotent. According
to these cases 1 and 2, A⊗B is not a finite local k−rational algebra.

□

Theorem 3.2. k is a field of characteristic zero. Let A1, · · · , An be k−finite localk−rational
algebras.

D(A⊗ · · · ⊗ An) = Endk(A⊗ · · · ⊗ An).
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Proof. Let m1, · · · ,mn be the respective dimensions of finite local k−rational alge-
bras A1, · · · , An. We deduce from Theorem 2.1 that:

(3.1) D(A1 ⊗ · · · ⊗ An) ≃ D(A1)⊗ · · · ⊗ D(An)

Since for all i ∈ 1, n, Ai is a finite local k−rational algebra, then, according to
Theorem 2.2, (3.1) becomes:

(3.2) D(A1 ⊗ · · · ⊗ An) ≃ Endk(A1)⊗ · · · ⊗ Endk(An).

We have:

dimk[Endk(A1 ⊗ · · · ⊗ An) = dimk[Endk(A1)⊗ · · · ⊗ Endk(An)] =
n∏

j=1

m2
j

So, we deduce from (3.2) that:

dimk[D(A1 ⊗ · · · ⊗ An)] = dimk[Endk(A1 ⊗ · · · ⊗ An)

As D(A1 ⊗ · · · ⊗ An) is an subalgebra of Endk(A1 ⊗ · · · ⊗ An), then:

D(A1 ⊗ · · · ⊗ An) = Endk(A1 ⊗ · · · ⊗ An.)

□

Corollary 3.1. The finite local k−rational condition is not necessary for the algebra
of differential operators on a finite-dimensional algebra to be equal to its algebra of
endomorphisms.

Proof. Let A and B be finite local k−rational algebras such that
(dimkA, dimkB) ̸= (1, 1). According to Theorem 3.1,A ⊗ B is not a finite local
k−rational algebra.

However, we have D(A⊗B) = Endk(A⊗B), according to Theorem 3.2. □

APPLICATION

Construction of algebras A such that: D(A) = Endk(A)

These results permit to construct algebras which are not necessarily finite local
k−rationals including the algebras of differential operators and endomorphisms
coincide.



ALGEBRAS OF DIFFERENTIAL OPERATORS AND ENDOMORPHISMS IN FINITE DIMENSION 397

Indeed, if a finite local k−rational, then for any k−algebra

An =
n⊗

i=1

Ai

where Ai = A,∀i ∈ 2, n, we have D(An) = Endk(An).
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