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ADVANCED DEVELOPMENT OF CONVERGENCE RATE ANALYSIS BY
IMPROVED LANDWEBER METHOD BASED ON LOGARITHMIC CONDITION
FOR NONLINEAR INVERSE PROBLEMS

Ly Van An

ABSTRACT. In this article, we use the Landweber method to analyze the degree
of convergence based on the conditions of the logarithmic function for nonlinear
misalignment problems. The regularization parameters are chosen according to
the difference principle. That is the main result in this paper.

1. INTRODUCTION

The Landweber iteration or Landweber algorithm is an algorithm to solve ill-
posed linear inverse problems, and it has been extended to solve non-linear prob-
lems that involve constraints. The method was first proposed in the 1950 by Louis
Landweber, [1]] and it can be now viewed as a special case of many other more
general methods [2]].

To formulate the problem, we consider the inverse potential energy problem as
follows:

1.1 Au = Hgq, in €,
u=>0 on [.
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I determine the form of an unknown domain ¢2; by measuring the Neumann
boundary values of u on 0.

In there Hg, is the characteristic function of the domain ; C 2 = {x e R™:
|z| < R}. To study the next problems, we consider the following nonlinear opera-
tor equation:

(1.2) F(z) :=y.

In there:

(1) Here we assume that X, Y are Hilbert spaces and the unknown z includes
the information of the domain ; C €,

(2) y is the derivative of u on the boundary,% o

(3) v is the outer normal vector on I,

(4) F:G(F) C X — Y is a nonlinear operator on domain G(F) C X.

Note: For convenience in this article, the indices of inner products < -,- > and
norms || - || are neglected but they can always be identified from the context in
which they appear. Due to the nonlinearity of equation (I1.2]), we assume all over
that equation has a solution x* which needs not to be unique. We have the
disturbed data y° with

(1.3) || <o

where § > 0 is a noise level. If one solves equation by traditional numerical
method, high oscillating solutions may occur. Thus, one needs a regularization to
minimize the approximation and data error.

Recently, we have been researching improved regularization methods, (see [3],

IZ1))
(1.4) () = F'(2° (1)) [y5 - F(a:5(t))] - (9:5(75) - g;) 0<t<T.

where the term & — 2°(t), 2°(0) = .

A discrete version analogue to equation ([1.4)) is successfully developed (see [5]),
where the whole family of Runge-Kutta methods is applied and one obtaines an
optimal convergence rate under Holder-type sourcewise condition if the Fréchet
derivative is properly scaled and locally Lipschitz continuous.
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It is well known that, for many applications such as the inverse potential prob-
lem and the inverse scattering problem (see [6]), the Holder type source condition
in general is not fulfilled even if a solution is very smooth. It is applicable only for
mildly ill-posed problems (see [7], [8]). Therefore, the convergence rate analysis
of an explicit Euler method presented by

(1.5) 2 o =ad + F(ad) [gf — F(z) )] — Yo (20 — 20), Vi =1,2,... k.

g n;
The Fréchet derivative is properly scaled and locally Lipschitz continuous,
<landv; =7,"i=12,... k.
Next, we consider the equation

F'(z7)]

>

l o f A< 1
(1.6) f=fs Fa(A) = <” ) or 0<A\<I,
0 for \A=e,

with 2 > 8 > 1,k € N* and the usual sourcewise representation.
(1.7) rt — o= f(F’(x*)*F’(xﬂ)w, w e X.

The method in equation (1.6) is also known as the modified Landweber method
[9] which has the rate O(v/0) under the Holder-type source condition and general
discrepancy principle. As usual, the Fréchet derivative of F' needs to be scaled.
Furthermore, we assume a nonlinearity condition of F in a ball B,(z) = {z € X :
|z—o|| < p},p > 0, which is given in Assumption 1. It is well known that, without
the additional assumption on the nonlinear operator, the convergence rate cannot
be provided. The following assumption has been used in many works (see [[10]),
i.e., there exists a bounded linear operator R: Y — Y and G : X — Y such that

(1.8) F'(2) = R(&,2)F'(z) + G(&, ),
(1.9) HI—R(:@,J; ‘
|

(1.10) HG(;f:,x < CG‘ F’(:ﬁ)(@—@H.

with nonnegative constants C'r and Cy. The essence of this article is that we
analyze the convergence of the iteration based on equation and equation
to reconstruct the solution domain 2; for Math problem (1.1)).

Layout of the article: In the Preliminaries section, some properties are reiter-
ated:
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- Describe the Landweber iterative method for the inverse problem
- Some basic assumptions as the basis for convergence analysis and basic
theorems.

Section3 Basis for building convergence.
Section4 Convergence Analysis.

2. PRELIMINARIES

2.1. Describe the Landweber iterative method for the inverse problem. Let
F=(F,...,Fy_1)and y = (yo, ..., yp—1) then the Landweber iteration for solving

(2]—) F}(-I):yja ]:17>p_17
reads as follows

r = 2y — Fj(a) (F(a) = y°)

p—1

(2.2) :xz—ZF;(xi)*(F(xi)—yé), k=1,....
j=1

Let B,(x¢) be an open ball of radius r containing x,.

I. The conditions Aj
(1) F is Frechet differentiable on B, ()
(2) F'(z) < 1forz € B,(x)

3) ||F(2) - F(@) - F(2)(x — &)

< ||F(z) — F(z)

, n< %,x,i € B, (xo)

are strong enough to ensure at least local convergence to a solution of

(2.3) Fi(z)=vyj,j=1,...,p— L

II. The conditions Ay

If 4° does not belong to the range of F, then the iterates z¢ of (2.2) cannot
converge but still allow a stable approximation of x, provided the iteration is
stopped after k, = k? steps acording to the generalized discrepancy principle
+n

> 2.

1
(2.4) Hy‘S—F(xi*)H <75 < Hy‘S—F(xi) ,0 <k < ko, f0r7'>21




ADVANCED DEVELOPMENT OF CONVERGENCE RATE ANALYSIS 403

When speaking of convergence rates to a solution of (2.1) of an iterative method
zpy1 = U(zy) for solving an illposed problem we understand:

(2.5) (a) if §=0 therateof }

x*—ka—)O as k — oo.

(26) (b)) if >0 therateof ‘

T —$k*(5)H —0 as J—

Under the general assumptions A; the rate of convergence of z;, — x, as k — oo
(with precise data, i.e. § = 0) or :172*(5) — x, as 0 — 0 (with perturbed data)
will, in general, be arbitrarily slow. This is known for linear ill-posed problems
Kz = y where the rate of convergence is almost completely determined by the
tuple (v; || f||) in the source-wise representation

(2.7) T, —xo=(K'K)'f, v>0,feX

cf. Example 3.1 and Theorem 7.3 in (see [11]]). The same parameters also de-
termine the rate of convergence of Tikhonov regularization (see [12]]); the corre-
sponding numbers

(2.8) e —x9 = (F'(x.)"F'(2.)"f, v>0,feX

play the same role in Tikhonov regularization for nonlinear problems (see [13]])
and in many iterative regularization methods (see [[14]). In contrast to Tikhonov
regularization, assumption (with ||f|| being sufficiently small) is not enough
to obtain convergence rates for the Landweber iteration; we need further proper-
ties of F': we require

(2.9) F(x) = R F'(x.),x € By(x0),
where {Rx cx € Br(x0>} is a family of bounded linear operators R, : Y — Y with

(2.10) | R =1 < Cllo 2.

x € B,.(z9),

and C is a positive constant. Note that in the linear case R, = I.
Therefore, (2.9) may be interpreted as a further restriction of the "non-linearity”"
of F. In particular, (2.9) implies that

N(F'(z,)) € N(F'(z)), =z € B,(x0).

It is not diffcult to see that (2.9), (2.10) Deduce condition 3 of A; pseudosecretion
with & = z, for r being sufficiently small.
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Theorem 2.1. Assume that problem (2.1))
(2.11) Fi(z)=vyj,j=1,...,p—1,

has a solution in B, (x), that y° satisfies

(2.12) Yo —ysl| <65 €{0,1,...,p—1},

and that F fulfils

(1) F'(x) <1 forz € B.(xg),

) ||F(z) - F(2) — F'(z)(x — &) < n||F(z) = F(2)||,n < §,2,% € By(x0),

(3) F(z) = R,F'(z.), € B,(xo), where {R, : © € B,(x)} is a family of
bounded linear operators R, : Y — Y with ||R, — I|| < C|lz — z.||,z €
B, (o).

If x, — xq satisfies
. —x9 = (F'(z.) F'(x,)" f,v >0, f € X,

with some 0 < v < % and ||| being sufficiently small, then there exists a positive
constant c,, depending on v

(2.13) |2 — 2y || < Cul|f|| (K + 1)
and
(2.14) |y° = F(af)|| < 4.C.| fI|(k +1)~71/?

forall 0 < k < k,. For 6 = 0 (2.1) and (2.13) holds for all k > 0. Furthermore, for
0>0

(2.15) k, < Cl(HfH/(;)W(%H)
and

(2.16) ’ T, — xiH < 02Hle/(Qv—i-l)52v/(2v+l)

for some constsnts C,Cy > 0, depending on v only.

2.2. Basis for convergence analysis.
Assumptionl : Suppose that § > 0 and m € Ny, k € N*. The real-valued function

F(7) = (1 — ~4)™(1n Sy 8
fy)=@0-=9"(0 7)
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defined on [0, 1] satisfies f(v) < C(In(m + €))~*? with C independent of m.
Moreover, for each r € R. The real-valued function

- 1e

9(7) = (1 = 7)™ (In ;)
defined on [0, 1] satisfies §(7) < C(m + 1)~z (In(m + €)™ < C(m + 1)~ 2 (In(m +
1))~ with C independent of m,

7m™) = (1 - %)m(l ) Slni)_w < (W(m+e) ™, 521

m m

Assumption?2 :
Suppose > 1,C > 0and § > 0,k € N* k > 2 be sufficiently small such that
1> (—In(6C))™" > 6.

Let

(2.17) /0 exp(— ((1 - 1n(A))-’fp)?7§)(1 —n(\)||dByw|* = Cs.
Then

(2.18) /01(1 —In(\) || By < C(—n(8)) 7+

with a generic constant C'.

Assumption3 :

Suppose 5 > 1,k € N* k > 2. Then, there exists a constant M, which is inde-
pendent of m, such that

k=1, . = /. 3
GHINF (j+1\T 1 [ In(k+2)*
(2.19) Z(k—ﬂ) (k+1) k+1<ln(k—j+1))

j=0

k-1 , . -1, . =1 kB
kB Jj+1 J+HINF 1 In(k + 2)
(220 (In(k +2)) ;(ml) (k:+1) k:+1<1n(k;—j+1)) =M.

Moreover, there exists a constant M (independent of k) such that

M

IN

Y

m—1

221) > G+ DY@+ 1) (m -5+ 1) (I (m i+ 1)) <

J=0
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Assumption4 :

Suppose that z is a solution of

ke k
(2.22) x(lnx) =5
Then, 7 satisfies
—1In )+
(2.23) &= 0(%)
Assumptionb :

There exist positive constants C},, Cr, and C, and linear bounded operator R, :

Y — Y such that, for z,,,, z,,, ..., z,, € B,(x), the following condition holds
(2.24) F'(2n,) = Ry, F'(z7"),

(2.25) |Rer — I|| < Culfn, — 2],

226 e, 7| >

(2.27) | Rz, || < Cr i=1,2,... k.

Here 27 is the exact solution of equation F(z,,) =y, i =1,...,k.

Theorem 2.2. Assuming that hypothesis Assumption 5 is satisfied, then we have the
following

k

(2.28) Y |17 = Ry

=1

1 k
<P el
i=1

)

with Pr > 0 being a positive constant for e,,, = * — ) ,i=1— k.

Theorem 2.3. Suppose that the following conditions are satisfied

(2.29) F'(2,,) = Ra, F'(z),

(2.30) |Be,, — I|| < cpf|zn, —2™||,Vi=1,... k.

Then

(2.31) |F(2d,) — F(zt) — F'(a*)(2), — 2™)|| < %CLH% | Pen, ||,

Vi =1,....k You,, Ty, ..., 00, € By(20), for P = F'(z"),e,, = a7 — 2l Vi =

n,



ADVANCED DEVELOPMENT OF CONVERGENCE RATE ANALYSIS 407
3. BASIS FOR BUILDING CONVERGENCE

In this section we give two main lemmas for convergence analysis

Lemma 3.1. Let B be a linear operator with ||B|| < Ine. For ni,ny,...,nx €
N*\ {1}, eo = f(Mw for f given by
—kB
In £ or 0< A<,
(3.1) f=1rfs  fs(A):= (ng) ™ A B
0 for A=e,

and 5 > 0,k € N*, there exist positive constants q; and g, such that

ng—1ng—1—1 n1—1

ITIT - I[a=w) =)

Jk=0 Jjr—1=0 j1=0

k
B2 (1—y) = BBt | < gy T In(ny + €))7
j=1
and
ng—1ng_1—1 ni—1
510 IT -+ Lm0
Je=0 jr—1=0 Jj1=0
(3.3)
k N k
(1= ) = B Bymtretetneeg | < o (T](ni+ €)™ (][ In(ni + )~
=1 i=1

O<’in§1, J¢:O,1,2,...,ni—1,andi:1,2,...,k

Proof By assumption 1 and equations (3.1)), ¢1, ¢> > 0, we have

ng—1ng—1—1 ni—1
IT IT - T =) =)
J&=0 jr—1=0 j1=0

([ _ B*B>n1+n2+...+nk€0

ng—1ng_1—1 ni—1

(3.4) < H H H 7]1 T 1 7jk—1)(1 - ij)

Jk=0 jr-1=0 J1=0
H([ _ B*B)n1+n2+---+nkf(BB*)
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< sup ‘ — Attt (] p )\)*M‘ Hw”
2(0,1]

<on(TT (o +0) ™ o]

i=1

and

B H H H nyl e ijf1>(1 _ijk)

H —1ng_1—1 ni—1
Jk=0 jr-1=0 Jj1=0

. ([ - B*B>n1+n2+...+nk€0

ng—1ng—1—1 ni—1

<II II - Ila-w) =)

Jk=0 Jjr-1=0 Jj1=0

(3.5) (L= )| = BByt (BB s f(BBY)|[Jw]

el

< o [T0 + 1) ([T + €)™ o]

i=1

(1 — A)mtnatetnezz (1 —Ip \)

Lemma 3.2. Let B be a linear operator with ||B|| < Ine. For ni,ns,...,np €
N*\ {1}, eo = f(A)w for f given by

Ing) " A
I i

and 8 = 2¢,¢ € [1/2,1], k € N*, there exist positive constants g3 and q, such that

I

no—1 j2

(3.7) + > o1 (I = B BY? T[(1 = 7y 1)

jo=0 i=1

n1—1 jl

Z ’7”1—]1—1(1 - B*B)jl H(l - ’ynl—i)

j1=0 i=1
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ne—1 Jk
+oo+ Z ’Ynk—jk—l(l - B*B)jk H(l - f}/nk—i))eo
k=0 i=1
k
§q3(ln(2nj + e))fﬂHwH
j=1
ny1—1 J1
HB( Z ’7m*j1*1([ - B*B)jl H(l - 7”172')
J1=0 i=1
na—1 J2
(3.8) + Z 7n2—j2—1([ - B*B)j2 H(l - 7n2—i)
j2=0 i=1
ni—1 Jk
+oee Tt Z f)/nk*jk*l([ - B*B>jk H(l - 7”1@*'5))60
k=0 i=1
k
<qs(ni+mng+ - +mng + 1)_1/2k(1n(z n; +e))
j=1

1
(l+t0) toE[2,+OO>,Z':0,].,...,TZJ'7']':1,...,]{3.

Yi = ok

Proof. First we prove ([3.7). Without loss of generality we assume that n; = ny =
C=ng =y, (N < Z?Zl n;). So from (3.7) we get

np—1 J 1
(3.9) > Ym—in (I = B*BY T[(1 = ym,—) E(ln(nh k+e) %) ||w|
7=0 =1

From the problem hypothesis we have § = 2¢ deduce that g =2< m(ln(z—n—}bﬂ)): Vn, >

2. So, gln(ln(nh —1+4e)<In2<Inn, <Inty <In(ty + Z;’;l n; —1). We have

k
In(In(n, — 1+ e))g <lIn(ty + an -1)

j=1
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k
(3.10) s, —1+e) > (to+ Y n;—1)7°

Jj=1

By (3.9) we have

w27 = BB Y] < to+;m =17 sup 1=

(3.11) < —(tg+ Yy n; —1)"
nho ;]

Note that (3.10) is still true for k=1. Now we assume that (3.9]). Next we consider
the following equality

ny J
k Z/}/knh —jn— 1] BB]H 1_’7knhz
7=0 i=1
np—1 J
=k Z’Yknh —Jjh— lI BB]H — Vknp— 2
Jn=0 i=1
np,
+Yinp—j—1(L — B*B)"™" H(l — Vkenp—i)€0
=1
np—1 ' Jh
SE Z Vinp—jn—1(I — B*B)™" H(l — ’Yk-nhfi)eoH
jn=0 i=1

1 ‘ Jh
+E”7’f~nh—nh—1([ - B*B)jh H(1 - 7k~nh—z‘)€o

i=1

(3.12) (to +k-ny—ny—1)"°

<2 (g + ) ) ] +

-|| I — B*B)™ f(B*B)u||

k: ((ln(nh-l—e )HwH—l— (t0+k-nh—nh—1)_¢

((In(nn + €))7 [
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From the above proof we can deduce that
(3.13) %(ln(k cnp —np — 1+ 1)) ?(n(ny +€)) P <In(ny +1+¢€)) 7.
So,

J

(I =B*BY [[(1 = Yt

=1

03 8 In(ny, +¢€))~?
L’ ”wH(ln (np, +1+e))? +1
(3.14) Sﬁln(nhqtl—l—e))_ﬁ“w“.

k

4. CONVERGENCE ANALYSIS

To investigate the convergence rate of the modified Landweber method under
the logarithmic source condition, we choose the regularization parameter n ac-
cording to the generalized discrepancy principle, i.e., the iteration is stopped after
N = N(y°,9)) steps with

(4.1) 1(y° — F(a})|| < 86 < ||y — F(3)]],

Here 5 > f%z positive number. In addition to the discrepancy principle, F satisfies

<N172:177k

the local property in the open ball x € B,(zy), of radius p around z,

(4.2) |F(z) — F(2) — F'(z)(x — 2)|| < n||F(z) — F(2)

) n < 57
with z,2 € B,(x¢) C D(F). Utilizing the triangle inequality yields
1 1
3 —||F’ — 1 —
@3 P - <y

to ensure at least local convergence to a solution 2™ of equation (3) in B (zo).

< [|[F(z) - F(2)

< 1THF - F(#)

Theorem 4.1. Assume that the problem in equation F(x) = y has a solution z* €
Be(x0), y° that satisfies the functional inequality

(4.4) v =y <6,
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and F satisfy the following functional equation and functional inequality
(4.5) F'(z) = R, F'(z%) and HRI—IH SCLHiL'—erH.
Assume that the Fréchet derivative of F' is narrow such that

| F'(z)]| < 1,V € Bs (o).

Furthermore, assume that the headspring condition in equations

lnﬁ)_kﬂ for 0<A<1

4.6 h,q) = (In§ -

(4.6) fa(h.g) {0 for A—c.

and

4.7) ot —zo = f(F'(a"))F(zh))w,z € X,

is fulfilled and that the modified Landweber method is stopped according to equation
1 . . 1 . 1

(4.8) mHF/(x)(l' —2)|| < ||F(z) = F@)] < EHF(CU) —F(#)], n< 3

If ||w|| is sufficiently small, then there exists a constant E, depending only on 3 and
|wl| with

(4.9) lea]| < B

(4.10) Inn) "’

and

(4.11) |y* = F(a®)|| < 4BsM (n+1)7* (Inn) .

Proof. First we consider ¢,, = 2™ — 29 for the error of the n;th iteration z% of
equation

(4.12) (zt =20 ) = f(F'@") F(a"))w, weX,
and P = F'(z"). So we represent the equation (4.12)) in the following form

(I’+ - xfbﬁ-l)

413) =1 =) (et 2l ) + F )y — F(ad,) = (w0 — ).
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Since e,, = " — 2% and P := F'(z"), we present ¢,, as follows:

Eni+1

= (1= yn)en, + F'(25,)"(y° = F(a,) = i (w0 — ™)
(I — P*P)en, + (1 — 7, ) P* Pe,,
y(s F( nl)%@( 0 —$+)
(I = P*P)ey, + (1= ) P*[F(x;,) = F(27) = Play, — 27)]
(22,)] (4 = F(x5,)) = 1, P*(y° = F(z7,))

+ F'(a5,)"

)
Vi)
(
Vi)

(4.14) —F

- -

— ) P*(y = ¥°) = Y (w0 — )

(1-

(1-

s

(1 =)

(1 ’Y)([ P*P)ey, + (1=, ) P*[F(a,) = F(z™") = P(ay, —a™)]
[

(

=

P*— PR, (" - F(scm.)) - %P*<y5 — F(,))
")

~ o+

— Y P*(y = 4°) = Y (20 — @

— i) (I = P*P)en, + (1 = 7, ) P*[F(x},) — F(a") = P(,, —27")]

+ P (1 =y )] = Ry 1(4° = F(a3) =, Py = Flay,
+ (1= 9,)P*(y — ¢°) — Y, (w0 — 27).

I O
~—
~—

Next we put
= (1 =) (F(2y,) = F(a™)) = P(ah, —2") + [(1 = )] = Ry |(4° — Fxy,))-
So equation is written as:
(4.15) enit1 = (1= ) (I = P*P)en, + (1 = 7a,) P*(y = ¢°)
—Yn; (o — ) + Prop,.
By repetition equation (4.15), we obtain the closed expression for the errors

€ny + ...+ éen,

rni—1 ni—1 J1

=| [T =%)T =P Py + > yujya(I = BB [J(1 - %i)} €o
L ji=o 71=0 i=1

roni . J1

- Pl - vm_o] Py — o)

Lji=1 i=1
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> TI == PPV Prony s+ -

1=0 i=n;—j1
-np—1 ne—1
- Jk=0 Jx=0

- Mk Jk

L je=1 i=1

ng—1 ngp—1

+ H (1 - '7jk)(] - P*P)nk + Z ’Vnk—jk—l([ - B*B>jk H(l - Wnk—i>

Jk
i=1

D (T m_»} Py — o)

(4.16) + Z H <1 _fyi)(l_ P*P)jkp*vnk*jkfl'

Jk=0i=ng—7

Furthermore, it holds

Pen, +...+en,)

- ni—1 ni—1
:pH

- 1=0 j1=0

j1=1 i=1

(4.17)

ni—1 ni—1

7]1 I P*P nl_FPZ’Vm —Ji— I(I B* B)Jl H<1_7n1—i>

Ji
i=1

+ -P i:(l - Py ]Ja- vnl-i)] Py —vy°)

+P Y T =T = PPP Py -

J1=0i=n;—j1
- np—1 nE—1
+lPJJa
- Jr=0 Jk=0

Ge=1 i=1

nkfl nkfl

Jk
— ) = P*PY™ + Py (I = B*BY* ] (1 — vnk—i)}eo

=1

+ P Zk(l — P*P)* ﬂ(l - %ki)] P*(y —y°)

+P > J[ A=) = PPy P, 1.

Jk=0 i=ng—7

So, (€n1;€n27 e

,€n,,) infer that P(e,,, en,, . ..

,€n, ). Next, for 0 < n; < Nj, using

the discrepancy principle, triangle inequality, equation (4.3]), and
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(4.18) Hy5 - F(x‘;v)” < k||y5 — F(x?V)H — RO < Hy5 — F(xzi)H,O <n; <N,

i=1,....k k> f:—z,z =1,...,k. Using Lemma 3.1, Lemma 3.2, and equation

(4.18), we obtain
[[on || < (1 =) [[(F(a,) = F(z*)) = P(a), — 2*)]|

+ (|1 = )T = By ([l = F(a,)]

2
e + —PRH%HHHP%

(4.19) <

| P,

é::%‘i‘l]j_ljjwi:l;--wk?andl_mg1‘

Next we need to show that

(4.20) llen, || < Pa(In(ny, + €))7
Inferred

(4.21) k|en, || < Po(In(ny, + €)=

and

(4.22) | Pen, || < Po(nn +1)% (In(ny, + €))7,
Inferred

(4.23) k|| Pen,|| < Po(ny +1)% (n(ny, + )~

Using the inductive method.

In case 1 with n=0, equations and are satisfied. Next we assume
that equations and hold for £ = n — 1. We only need to prove that
equations and hold for n=k. Indeed. We rewrite equation as
follows: in order not to lose generality, we assume that ny = ny = - -+ = n, = ny,
then according to we have
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np—1
len. | < || TT (1 =)0 = P*P)™eo|

j1=0
np—1 ) Jn

11D i = BB [](1 =, -i)eo
Jjn=0 =1
h ' Jh

+ Z([ _ P*P)thl H(l . 7nh7i)P*<y N y§)
Jn=1 i=1

TLh—l TLh—l

(4.24) +1[ Y T[] =)= PPy P,

Jrn=0 1=np—jp,

Form ||P|| < 1. So, we have

nhfl
S (- PPPP|| < v,
Js=1

and

Hu—?mw%somﬁwﬂ sl

Therefore we have

np, Jh
S (=P Py [0 = =) Py — 1)
jp=1 i=1
(4.25) <[> (T = PPy Py — )| < Vo
Jn=1

Next, we consider

np—1 np—1

Z H (1 - %’)([ - P*P)th*vnh,]‘h,1

Jrn=0 i=np—jn

nh—l

Vnmgut|| <37 G+ 172w, |

Jjn=0

Tlh—l
(4.26) <|> u-ppyp

Jjn=0
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So, using Lemma 3.1, Lemma 3.2, and equations (4.25) and (4.26) to equation
(4.24), we obtain

e | < Lnims -+ ) o] + 2 s + )4 o] + s

nhl

(4.27) + 7 N G+ )2,

Jr=0

Then, using equation (4.19) to estimate the last term of equation (4.27)), we obtain

Tlh—l nh—l
(4.28) Z (]h + 1)_k/2||vnh_jh_1H <q Z (]h + 1>_k/2HPenh_jh_1 H ||enh_jh_1||'
Jjn=0 Jr=0

We apply the assumption of the induction in equations and into
equation (4.28)):

np—1
> G+ D7 vn, |
Jk=0
np—1
(4.29) <@ Z(]ﬁ"‘l k/QHPenh —jh— 1HH6nh —jn— 1”
Jjn=0
. Agmﬁl Jh+ 1\ =k/2 /Mp — Jhy—k/2 : kg 1
a3 (o) G s 1)),
—
Rewriting equation (4.29), we have
e —k/2 2 s N C gLy k2
Z(]h+1) anh—jh—lH —QIP (1H(nh+€ Z 7’L +1)
Jn=0 =0
(= dnyw o+ 0 rﬂ !
< P2(In(ny, + ¢)) ’“ﬂnil It Ly
1 h ~ nh+1

Nh — Jh—k/2 In(ny, +e) o
(4.31) '(nh—l—l) {(ln(nh—J’h—l‘f‘@))} (nh"‘l)’
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k € N,k > 2. Next we prove similar to the proof in the Assumption 3. Firstly,
n — j > 1 provides

ny +¢€ ) n,+e
4.32 In - In(np, — 9, —14+¢€)>1n - .
( ) (nh_]h_1+€) (. = G )2 (nh—Jh—1+€)

With n, — 1 > j, > 0, the properties of the logarithm provide

In(ny, + e) _ In(n, +e) 14 ln(#tlpre)
(In(np —jn—1+e€)) In(n,+1) In(ny, —jn —1+e)
ny + 1
4.33 < Myl1+1 , ,
(433 B 0( n(nk—Jh—1+€))
with constant M, < 2 and n; € N*. From equation (4.32) can be estimated as
follows:
np—1 np—1 j +1 y
. _ ~ D _ h —k/2
D Gt 17 gt | = AP+ €)™ 3 ()
Jjn=0 =0
np — jh —k/2 ln(nh + 6) kb 1
(4.34 (= dny [ . } ( )
ny + 1 (In(np —jn — 1 +€)) ny + 1
np—1 .
S _ Jn+ 1\ k2
< abnim + )" 3 ()
=

Np — Jh —k/2 ln(nh+e) k8 1
'(nk+1) [(1n(nh—jh—1+€))} (”h+1)'

The last summation is bounded since, put r := 5 the integral

1

nh+1)’
1—r a a

(4.35) / 22 (1 —x)2 (1—1In(1 —2))*dr,

with a constant M that depends on n, we substitute the above information into
the equation (4.27)

HenhH < cp(In(ny, + e))’kﬂHwH + & (In(ny, + e))’kﬁHwH
+ /0 + ¢y, P2 (In(ny, +2)) 77
(4.36) < (en + &)|Jw|| + MM, P2(In(k - ny, + 2)) ™ + \/ngo.
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So, in general we have

k ~ k
6 . ; _
lemtnstceml] < [ L ol + condty” My P} (3~ mj + €)™+

j=1 j=1
\/n1+n2+~|—nk

(4.37) + ’ J.

Similarly, equation (4.17) we have

np—1

\W%AzHPIIu—w»u—P#wwo
1=0

np—1 Jh ‘

+ || P Z Vnh*jhfl([ - B*B>jh H(l - ’Vnhfi>eo

Gn=0 i=1
Mh ) Jh
+|PY (1= PPy ] = yu—i) Py — o)

=1 i=1

np—1 np—1

(4.38) +PY T A=) =P Py Py,

Jr=0i=np—jn

From the hypothesis HP H < 1, we have

(4.39) |(I = Px*PyrPP*|| < (jr+1)"

and
np—1

(4.40) |P> (I—PxPy"PP*||<|[I—(I-PP)™|<1.
Jn=0

Consequently;,

Jh

(4.41) HP (I -pPPy A = ) Py =) < [T = (T = PP <1

je=1 i=1
and
nhfl nhfl
(4.42) HP > I @=wU =P PyY-Pru,

Jrh=0 1=np—jp,
np—1
< Z (3n + 1)_1anh—jh—1H-

Jn=0
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From the Lemma 3.1 with n;, > 1, Lemma 3.2 and equations (4.41)) and (4.42) for
the equation (4.40) we have

[[Pen, || < ea(rn +1)72(n(ns + €))7 [faw]| + 61+ ni) ™2 (n(ng + €))7
np—1

(4.43) 40+ > Gn+ 1) |vn—ja]-

Jn=0
We estimate the last term of equation (4.43)) by using equations (4.19) and (4.33)
and the fact that (In(n + ¢)) =" < 1 as follows:

np—1

Z (o +1)7" anh—jh—l H

car Y (2 ) () (g — g = 1 4e))

= &Py + 1) (In(ny + €))7

X Z(jh+1)_1/2<1n( 1n(nﬁ+e) )) (In(ny +e))? !

— np + 1 np,—Jh—1+e n, +1

< G P+ 1)V (In(np + €))7+

np—1 . . . 2p
Jn L -1 = gy 172 In(np — Jjn) 1
. 1—
(4.44) jz()(nh+1) (nh—|—1> ( In(n,+1) ) np+1
e

The last summation is bounded since, with r := m, the integral
1—r
(4.45) / 27 (1—2)7 (1 —1In(l — 2))*dx < M,

with a positive constant ]\/4\;, independently of n. Substituting above information
into (4.41)) yields

[P, || < calmn +1)72(n(ny, + €)™
(4.46) + & (14 na) V2 (In(np + €))7 |||
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46+ 6Py + 1) (In(ny, + €))7
< [(e2 + &) wll + G PE] (1 +mi) ™2 (n(ny + €))7 + 6.
So,
kJHPenhH < co(np + 1)_k/2(1n(k “np + e))_kﬂHwH
+ G (14 np) 2 (In(k - np + €)™ ||
0+ P2 (ng + 1) 2 (k- ny + €))7
(4.47) < [(ca + &) |lwl + &P (1 +np) (k- ny, + €)™ 46

Setting h, := max{ci+ ¢, ca+6, ..., cx+6, } equations (@.47) and (4.44) become

\/n1+n2+—|—nk

h* A 3 i _
(4.48) |len| < [ || + G MgPM,PE (In(> nj+¢)) " +

)
j=1 K

and

ha . N -

1Pen || =< [ wll + cndti?ag P3Y (D my 4+ 1)
j=1

k
(4.49) (> nj+e) P+

j=1
Because of equations and we have

1

5 (a6

(4.50) t6 < ||y° — F(a,)|| §5—|—(1+n)HPenkH.

Moreover,

4.51) (1 —n)(t — 13| Pen|| < [hu||w| + & P2 (s + 1) (In(ngye)) > + 6.

Due to t > f:—z, we have I' = (1 — n)(t — 1) — 1 We can rewrite equation (4.46)) as

follows:

(4.52) 5 < %[h* || + 6,2 (e + 1) F (In(ne))
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Applying equation (4.47) to equation (4.44), we get

1
(4.53) lea ]l < (14 5) [P 5 P3] (In(ne)) 7
For ¢, = max{c,, ¢, }, in a similar manner, equation (4.45) can be written as
1
(4.54) 1Pew, || < (14 =) [P 5 P3) (i + 1) 72 (In(ngy)) .

Finally, we select ||w|| such that (1 + 1)[h. : PQQ] < M,. This is always
possible for sufficiently small ||w||. Therefore, the induction is completed. Using
equation (4.20), we have

Inn
Py

(g gy )™ < Paln(m) ™.

(4.55) llens|| <

and similarly, by using equatlon (4.18), we get

Inn
In(ny + e)
(4.56) < Pg(nk + 1)7Y2(In(n)) .

p2 (ng + 1)772( )" (In(n))~*

Iy = Pl <

Thus, the assertion is obtained. O

Theorem 4.2. 1. Assume that the problem in equation F(x) = y has a solution
x™ € Bs(o), y° satisfy the functional inequality satisfy

(4.57) |y’ —y|| <,
and F satisfy the following functional equation and functional inequality
(4.58) F'(x) = R, F'(z%) and HRm — IH < cLHx — x+H
Assume that the Fréchet derivative of F' is narrow such that

|F'(z)]| < 1,Vz € Bs (o).
Furthermore, assume that the headspring condition in equations

(lnf)fk’g for 0<A<1

(4.59) fo(h, g) = { 0 for A=—e

and

(4.60) at —zg=f(F'(a))F(z"))w,z € X
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is fulfilled and that the modified Landweber method is stopped according to equation
k k
4.61) [|> (= F@ )| <85 < ||y = F@)|,0<ni < Niji=1,... k.
=1 =1

If ||wl| is sufficiently small and 1 < 8 < 2, then

(4.62) HZNln kel g%*
and

* 1 -
(4.63) ZHx —af ] <M (= ) i

where ¢*, M* > 0 are positive constants.

Proof. Let put ey := ™+ — g = f(P*P)w. Then,

ni—1 ny1—1 J1
€ny = |: H (1 - 711)(1 - P*P)”l + Z ’ynlfjlfl([ - P*P)jl H(l o ﬁynll):|

i1=0 Jj1=0 i=1
F(PPw+ {Zu —pppJa- vm_»] Py — o)
ji=1 i=1

ni—1 ni—1

464 +> J] @=v)I =P PP,

=0 i=m—ji

nk—1 ng—1 Jk
€n), = |: H (1=, ) —P*P)"™ + Z ’Ynk*jk*l(j — PPy H<1 N fynkz)‘|

i, =0 Jk=0 =1
(P PYw + [Zu —ppp [0 %Wa] Py — )
jr=1 i=1

nk—l nk—l

+> [ =)= PPy P, 1.

Jk=0i=ng—7;

then
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N;—1 Ni—1 J1
€N, = [ H (1 - 72‘1)(1 - P*P)m + Z %1—]’1—1([ - P*P)jl H(l N 7N1_i):|
i1=0 71=0 =1
Ny J1
- f(P*P)w + {Z(I - Py ][0 - le—i)} Py — )
Jj1=1 i=1
Ni—1 Ni—1

465 +> ] (== PPy (P Pyin,

Jj1=0 i=N1—j1

Nj—1 Ni—1 Jk
en, = [ [T =) =P PNty ol = PP [~ Wﬂ)}
ix=0 Jk=0 =1
- f(P*P)w + [Z(I —ppyJJa- mi)} P*(y —y°)
Jr=1 i=1

Np—1 Np—1
(4.66) + Z H (1 - %)(I - P*P)jkf(P*P)@Nk—jk—l‘

Jk=0 i=Ni—jk
FOT U, —jpy—1 = Onj—jm—1:l = 1,... . ky;m = 0,...,N; — Land f(P*P) := [} \V/?(1 -
In \)**dE, from Assumption 1 we put r = —kf3 and we get
4.67) ||(I — PPy f(P*P)|| < a:(Gi + 1)) *(n(i + D), =1,... k,q; € RF,

Next, according to Assumption 3 we put h; = N; — 1,i =1,...,k, and

hi—1

S "G+ D72 (s + 1) (B — G+ 1) 7 (I (B — s+ 1))
Ji=0
h;—1

4.68) = (i + 17V (n(i + )" (hi — g+ 1) (In (b — ji +1))
Ji=0

+ (B 4+ D)7V (n(h; + 1)) < M+ (N); 2 (In(N;)P,i =1, k.

For i € {1,2,...,k} we consider the following equality
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Jewsll = | TT (1 =22 = PPY ]

Jk

Ne—1
+ Z YNk —jr—1 H<1 _’yNk_i)”(] - P*P)jkaf(P*P)

Je=0 i=1

I {i([ — p*p)i ﬁu — ny“-)} Py —y°)

Jr=1 i=1
Ni—1 Ng—1
(4.69) +> 1] @=w) =P PP (P P)on,—j1.

Jk=0 i=Ng—Jjk

Now we consider the sub-equation of ey, as follows:

| T (= )T — PoPYYeu|

i, =0
Ni—1 Jk
(4.70) + > it [ [ = ) [(7 = PrPYRuw
§e=0 i=1
Nip—1
+ H (1 _%)([ - P*P>jkf(P*P)@Nk*jk*1'
=Nk —Jk
From equations (4.19), (4.20), (4.19), (4.67), and (4.68)), we put
Np—1
Dy, = || T[T @ =7)(I = P*P)Nu|
ix=0
Ni—1 Jk
+ Z VYN, —jr—1 H(l - '7Nk—i)H(I - P*P)jkaf(P*P)
=0 i=1
Np—1
(4.71) + [[ (=% = PPy f(P*P)oy,_j—1.
=Nk —Jk
N;—1

< (Nl + 1)HwH + Z (]z + 1)_1/2(1n(ji + 1))p“ﬁNk_jk_1“

Ji=0

425
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N;—1
< (Ni+ D|lw|| + c2ér > G+ 1)72(ni + 1))7|| Pen,—ju1 | [len—ji—1]
Ji=0
R Nifl
< (Ni+ D]jw|| + 2617 > (s + 1) 72 (In i + 1)P(N; — i)~/
Ji=0
(In(N; = ji —1+4¢) 7
< (N; + D|w|| + M + (N) 2 (In(N;)P, i =1, .. k.

So, from equation (4.65]) we conclude that

4.72)
N;—1
Jex | < [Dx SP P+ | S0 = PPYP5 < [y FP* P + v/
Ji=0

i=1,..., k. From Assumption 2 and equation for some ¢4 > 0, we have
(4.73)  ||[Dn f(PP)| < ea(— o) P [(N; + D||w]] + M + (N;)"2(In(V;)7],
1=1,...,k. So,

474 len || < ca(=8)P[(N; + 1) ||w]|| + M + (V)72 (In(N;)?] + /N,
i=1,..., k. We apply equation (4.52); then,

(4.75) (N; + 1)V (In(N; +€))? < FL(S[C* wl|| +¢Pf] = %
i=1,...,k. for some positive c5. By the fact that

(4.76) Ni(In(N))? < (N + 1)(In(N; + ) < (F)°,
i=1,...,k. By Lemma 4, we have

(4.77) Nizcﬁ(+i5)2p,i:1,...,k.

Applying equation (68) to equation (66), we get
len,|| < ea(—=Ind)P[(N; + 1)||w]| + M + (N;) 2 (In(V;)7]
(4.78) + cg(—Ind)7?,



ADVANCED DEVELOPMENT OF CONVERGENCE RATE ANALYSIS 427

1=1,...,k,or
(4.79)  |lewm|| < (=) P (es[(N; + D[w]| + M + (N;) "2 (In(N;)P] + c6),
1=1,...,k. So,
k
—1n6) P (ca Y J(Ni + 1)||w|| + kM
i=1
k
(4.80) + ) (N T2 (In(N3)] + ).
i=1
or

Z e, < <—1n6>*pc4Z<Ni 1) ]| + (— nd)PkM

k
(4.81) (—=Ind)™ Y “(N) 2 (In(N;)P + keg(—In6) ™"

=1

5. CONCLUSION

In this paper, we give lemmas such as Lemma 3.1 and Lemma 3.2 to analyze the
convergence of the Inverse Math problem using Landweber’s Algorithm. That is
the main result in this paper.
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