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ABSTRACT. In this study, a new mathematical model of HIV/AIDS with vertical
transmission is presented and analysed. The well posedness of the model is anal-
ysed using the theory of positivity and boundedness of solutions. Analysis of the
model shows that the disease-free equilibrium is locally and globally asymptot-
ically stable when R0 < 1. Furthermore, the global asymptotic stability of the
endemic equilibrium is examined using a quadratic Lyapunov function and there
would be prevalence of HIV/AIDS in the population when the basic reproduction
number is greater than unity. Numerical simulations are carried out to support
the analytical solutions of the model.

1. INTRODUCTION

The lentivirus, also referred to as the Human Immunodeficiency Virus (HIV), is
the causative agent of Acquired Immunodeficiency Syndrome (AIDS). The human
immunodeficiency virus (HIV) attacks CD4+T lymphocytes, which are normally
white blood cells thought to be responsible for clearing invasive microorganisms,
so seriously impairing the body’s immune system. A normal, healthy person’s
CD4+T cell level is between 800 and 1200mm3 and patients with HIV infection
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are considered to have acquired immunodeficiency syndrome (AIDS) if this num-
ber drops below 200mm3 [1–3].The HIV infection can spread from one individual
to another by the use of a person’s blood, semen, vaginal fluids or breast milk.
The most common routes to spread HIV are through unprotected sexual contact
and sharing injecting equipment, including needles and syringes, with an HIV-
positive individual [4]. If the mother is HIV positive, the infant may contract the
virus after birth or through breastfeeding; this is referred to as vertical transmis-
sion [5–8]. Adults with HIV infection may appear healthy for years before devel-
oping AIDS [9]. Symptoms of human immunodeficiency differ according to the
infection’s stage. People who are HIV positive may not exhibit any clinical signs of
the virus during the early stages of the infection, which begin a few weeks after
the first infection and include fever, headaches, and sore throats. Other indications
and symptoms of immunosuppression include fever, diarrhea, coughing, enlarged
lymph nodes, and weight loss [3]. HIV continues to be a problem for public health
worldwide [10]. Over 79.4 million people have contracted the virus since it first
appeared and 40.4 million of those cases have resulted in deaths. The virus is still
spreading throughout the world [3]. Individuals from low- and middle-income
nations make up the bulk of the global HIV infection [11].HIV infection does not
have a cure. Nonetheless, one of the suggested treatments for HIV infection is the
use of antiretroviral therapy (ART) [12]. ART is taking a combination of two or
more anti-HIV drugs daily or as directed by a doctor, depending on the number
of CD4+ − T cells. Highly active anti-retroviral therapy (HAART) is the process
of mixing two or more antiretroviral drugs. Among the drugs are emtricitabine
(FIC), zidovudine (AZT) and highly active anti-retroviral therapy (HAART) [13].
Ninety-five percent of all persons living with HIV (PLHIV) should be diagnosed by
2025, ninety-five percent of those diagnosed should be receiving life-saving an-
tiretroviral therapy (ART) and ninety-five percent of PLHIV receiving treatment
should have a suppressed viral load for their own health and to prevent HIV from
spreading to others [14].

Mathematical modelling has become an important tool in studying the trans-
mission dynamics of infectious diseases and more and more researchers worldwide
are using it as an invaluable tool to study health-related problems connected to the
dynamics of infectious disease [15–22]. Numerous models have been developed
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to examine the dynamics of HIV/AIDS with vertical transmission in relation to ef-
forts for treatment and control [23–30]. [31] considered counseling, vaccination
and ART as control measures for the lentivirus. [32] developed a mathematical
model for an efficient management of the HIV epidemic while according to [33]
analysis, raising public awareness about HIV/AIDS can be beneficial in lowering
the disease’s prevalence within the general population.An ideal control framework
for the dynamics of HIV/AIDS transmission was provided by [34]. A mathematical
model featuring drug resistance compartment was developed by [35] to explain
HIV/AIDS transmission. Research on the effects of delayed diagnosis on HIV/AIDS
was conducted by [36]. In order to lower the prevalence of HIV infection, the re-
sults collected indicated that significant effort should be focused on encouraging
early ART initiation. [37] used Ethiopia as a case study to examine the best ways
to prevent HIV/AIDS transmission. Their findings showed that various control
strategy combinations reduced the number of infectious people with AIDS symp-
toms who were both diagnosed and undetected. Early treatment of people who
are latently infected lowers the dynamical development to full-blown AIDS, ac-
cording to [38]. [11] offered mathematical analysis for HIV infections with public
knowledge and detectability of viral load. According to their study, raising public
knowledge about HIV infection can help stop its transmission. Additionally, when
therapy is given to an infected person with a detectable viral load, the virus can
be readily suppressed to become undetectable, preventing HIV from being shared
through sexual activity. A nonlinear fractional order for HIV transmission dynam-
ics with optimal control was suggested by [39]. The study recommended that in
order to reduce the spread of HIV infections there is need for personal precau-
tion and periodic monitoring by medical practitioners.The dynamics of HIV/AIDS
transmission for both vertical and non-linear treatment were examined in the [24]
study. Their study found that reducing the prevalence of HIV transmission would
be greatly aided by early identification of HIV infection.

The organization of the work is as follows: Section (2) presents the full descrip-
tion of model. The analysis of the model is carried out in Section (3), while in
Section (4), the numerical simulations of the system are performed. Section (5)
wraps up the work with concluding remarks.
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2. THE HIV/AIDS MODEL

The total human population denoted N(t) is sub-divided into four compart-
ments of individuals namely, susceptible class S(t) (those who are not infected but
are prone to contracting HIV infection), asymptomatic infected class I(t) (those
who have contracted HIV infection but have not shown sysmptoms), symptomatic
infected class Is(t) (individuals who have contracted HIV and have shown symp-
toms) and the full blown AIDS class A(t) (those who have developed AIDS). Then
the total population is obtained as N(t) = S(t) + I(t) + Is(t) + A(t)

Let π be the recruitment rate of susceptible individuals into the population. The
effective contact rate with the probability that susceptible individuals are being
infected with HIV per contact with infected and AIDS individuals are cβ and dβ.
µ represents the natural mortality rate experienced by every compartment of the
population. The incidence rate (cI +dA)βS increases the asymptomatic infectious
human population and reduces it due to progression to the full blown AIDS class at
the rate σ. The symptomatic infectious population is increased due to progression
from asymptomatic infectious population and vertical transmission at the rates α

and a. The full blown AIDS compartment increases at the rate γ and reduced due
to disease induced death at the rate δ. Then the mathematical model governing
the dynamics of HIV/AIDS is given as:

FIGURE 1. The schematic diagram describing the dynamical spread
of the HIV/AIDS model
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(1)

dS

dt
= π − aπIs − (cI + dA)βS − µS

dI

dt
= (cI + dA)βS − (σ + α + µ)I

dIs
dt

= αI + aπIs − (δ + γ + µ)Is

dA

dt
= γIs + σI − (δ + µ)

The state variables (1) are subject to the initial conditions:

S(t) > 0, I(t) ≥ 0, Is ≥ 0, A(t) ≥ 0.

TABLE 1. The description of variables of the HIV/AIDS model

Variable Definition
S(t) Susceptible Individuals
I(t) Asymptomatic Infected Individuals
Ts(t) Symptomatic Infected Individuals
A(t) Full Blown AIDS Individuals

TABLE 2. The description of parameters of the HIV/AIDS model

Parameter Description
π Recruitment rate
β Transmission rate
δ HIV/AIDS induced death rate
µ Natural mortality rate
σ Rate at which symptomatic individuals becomes AIDS

individuals
α Rate at which asymptomatic individuals become symp-

tomatic
γ Rate at which symptomatic individuals become AIDS

individual
a ertical transmission rate
c Probability of disease transmission per contact with an

asymptomatic individual
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3. ANALYSIS OF THE HIV/AIDS MODEL

3.1. Invariant region.

Theorem 3.1. The feasible region of the HIV model (1) given by D ⊂ R4
+ where

{D = (S, I, Is, A) ∈ R4 : S + I + Is + A} is positively invariant and attracting.

Proof. To establish the invariant region of the HIV model, the total human popula-
tion is added together such that the rate of change of total population denoted by
N(t) is defined as

(2)
dN

dt
=

dS

dt
+

dI

dt
+

dIs
dt

+
dA

dt
.

Then the rate of change of total population becomes

(3)
dN

dt
= π − µ(S + I + Is + A)− δ(Is + A).

In the absence of HIV induced death and solving by standard technique, it follows
that

(4) N(t) ≤ N(0)e−µt +
π

µ
(1− eµt).

Therefore if N(0) ≤ π
µ
, then N(t) ≤ π

µ
for all t > 0. Hence, the biologically feasible

region D of the HIV model is positively invariant. Furthermore, if N(0) ≥ 0, then
the solution enters D in finite time or N(t) approaches π

µ
asymptotically as t → ∞.

Hence the region D attracts all solutions in R4
+ □

3.2. Positivity and Boundedness of solutions. The mathematical model (1) con-
siders only human population, then it is pertinent that all its state variables and
associated parameters are positive for all time t. Therefore, the following result
holds for all the state variables in the mathematical model (1).

Theorem 3.2. The solution set {S, I, Is, A} of the HIV model (1) with positive initial
conditions S(0), I(0), Is(0), A(0) in the region D remain positive in D for all time
t > 0.

Proof. Considering the first compartment of the model (1) so that

(5)
dS

dt
+ β((cI + dA) + µ)S.
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This implies that

(6) S(t) ≥ S(0)exp

[
−
∫ t

0

(cI(w) + dA(w))dw + µ(t)

]
> 0, for all t > 0.

□

Following the same procedure, it can be shown that the remaining state vari-
ables I(0) > 0, Is > 0, A(0) > 0 ∀ t > 0.

3.3. Equilibrium points and Stability Analysis.

3.3.1. Disease-free equilibrium. The HIV-free equilibrium point of the model (1) is
a state where there is absence of HIV infection in the population. It is determined
by setting the disease related variables to zero. Solving the related system of
equation, the HIV model (1) has a disease-free equilibrium point

(7) E0 = (S, I, Is, A) = (
π

µ
, 0, 0, 0).

After establishing the disease-free equilibrium, we proceeded to calculating the
basic reproduction number, denoted by R0. The basic reproduction number is de-
fined as the average number of new cases of secondary infection which is caused
by an infectious individual during the period of infectiousness in the population of
susceptible. The basic reproduction number is used to obtain the threshold condi-
tions under which the incidence of human immunodeficiency virus persists or dies
out if a small number of HIV actively infected human is introduced into a com-
pletely susceptible environment. The R0 is calculated using the next generation
matrix approach [40, 41], where the infected compartments of the model (1) are
considered at E0. The transmission matrix F and transition matrix V obtained at
E0 are given as follows

F =


cβπ

µ
0

dβπ

k1
0 0 0

0 0 0

 ,

V =

 k1 0 0

−α k2 − aπ 0

−σ −γ k3s

 ,
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where k1 = (σ+α+µ), k2 = (γ+ δ+µ), k3 = (δ+µ). It therefore follows that the
spectral radius of FV −1 is the basic reproduction number given as

(8) R0 =
βπ{(k2 − aπ)(ck3 + dσ) + dαγ}

µk1k3(k2 − aπ)
.

Lemma 3.1. The HIV-free equilibrium of the model (1) is locally asymptotically sta-
ble whenever the threshold parameter R0 < 1 and unstable otherwise.

Proof. The Jacobian matrix of the HIV model (1) evaluated at E0 is obtained as

(9) V =


−µ − cβπ

µ
−aπ −dβπ

µ

0 cβπ
µ

− k1 0 dβπ
µ

0 α aπ − k2 0

0 σ γ −k3

 .

Clearly, one of the eigenvalues of (9) is obtained as λ1 = −µ and the remaining
are obtained from the polynomial given by

(10) λ3 +B1λ
2 +B2λ+B3 = 0,

where
B1 = k1 + k2 + k3 −

cβπ

µ
> 0,

B2 = k1(k2 + k3) + k3(k2 − aπ)− βπ{(k2 + k3 − dσ)}
µ

> 0,

B3 = µk1k2(k2 − aπ)(1−R0).

Apparently, all the coefficients of the eigenvalues of the polynomial (3.9) are pos-
itive. Then by Descarte’s rule of sign, it follows that all the eigenvalues are nega-
tive, real and distinct. Hence the disease-free equilibrium of the HIV model (1) is
locally asymptotically stable. □

3.3.2. Endemic equilibrium. The endemic equilibrium point of the model (1) is
determined to provide more insights into the long term effects of the spread dy-
namics of HIV/AIDS in the population. It is a steady state solution where there is
presence of disease in the population. Let the endemic equilibrium point of the
model be denoted by E∗∗ = (S∗, I∗, I∗s , A

∗) and λ∗∗ = β(cI∗ + dA∗) represent the
force of infection of the model. Then solving (1) simultaneously at steady state
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yields the following:

(11) E∗∗ =

S∗ = πk1(k2−aπ)
k1(k2−aπ)(λ∗∗+µ)+aπαλ∗∗

I∗ = π(k2−aπ)λ∗∗

k1(k2−aπ)(λ∗∗+µ)+aπαλ∗∗

I∗s = απλ∗∗

k1(k2−aπ)(λ∗∗+µ)+aπαλ∗∗

A∗ = λ∗∗(γα+σ(k2−aπ))
k3{k1(k2−aπ)(λ∗∗+µ)+aπαλ∗∗}

.

By substituting I∗ and A∗ into the force of infection, the following result is ob-
tained

(12) λ∗∗ =
µk1k3(k2 − aπ)(R0 − 1)

k1k3(k2 − aπ) + aαπ
.

Hence, the endemic equilibrium point exists whenever R0 > 1 in (3.11).

3.3.3. Global Stability of Disease-free equilibrium. In this part, the global asymp-
totic stability of the HIV/AIDS model (1) is explored using the approach of [17,
24,42–44]. The model can be transformed into the form:

(13)
dX
dt

= F (X,Z)

dZ
dt

= G (X,Z) , G (X, 0)
,

where X ∈ R and Z ∈ R3
+. The X component represent the uninfected compart-

ment of the HIV/AIDS model (1) and the Z components represent the infected
compartments of the system respectively. Then the following properties must be
satisfied in order to establish the global stability of the disease-free equilibrium of
the system (1):

R1 : For dX
dt

= F (X∗, 0), X∗ is globally asymptotically stable.

R2 : G (X,Z) = AZ − Ĝ (X,Z), Ĝ (X,G) ≥ 0 for (X,Z) ∈ D,
where A = ∂G

∂Z
is an M-matrix evaluated at (X∗, 0) whose off-diagonal elements

are non-negative

Theorem 3.3. The disease-free equilibrium point E0 of the HIV/AIDS system (1)
is globally asymptotically stable provided R0 ≤ 1 and, properties R1 and R2 are
satisfied.

Proof. F (X,Z) and G(X,Z) are obtained from the system (1) as

(14) F (X,Z) = (π − aπIs − βS(cI + dA)− µS)
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and

(15) G (X,Z) =


βS (cI + dA)− (σ + α + µ) I

αI + aπIs − (δ + γ + µ) Is

σI + γIs − (δ + µ)A


such that F (X, 0) = (π − µS). Then dX

dt
= F (X, 0) implies that

(16)
dS

dt
= π − µS.

Solving by standard technique yields

(17) S (t) =
π

µ

(
1− eµt

)
+ S (0) e−µt.

Irrespective of the size of S (0), as t → ∞, then S (t) → π
µ
. Therefore, the disease-

free equilibrium point (X∗, 0) is globally asymptotically stable satisfying property
R1.

Furthermore, the M-matrix with non-negative off-diagonal element is given by

(18) A =
∂G

∂Z
=


cβS0 − (α + σ + µ) 0 dβS0

α aπ − (γ + δ + µ) 0

σ γ − (δ + µ)

 ,

where S0 = π
µ
. Then, it follows that AZ − Ĝ (X,Z) is obtained as

(19) Ĝ (X,Z) =


β (cI + dA) (S0 − S)

0

0

 .

Since 0 ≤ S ≤ π
µ
, it is apparent that Ĝ ≥ 0 satisfying property R2. Therefore

the disease-free equilibrium of the HIV/AIDS model (1) is globally asymptotically
stable. This ends the proof. □

3.3.4. Global Stability of the Endemic equilibrium. The global asymptotic stability
of the HIV/AIDS model (1) around the endemic equilibrium is explored using the
approach of [22,25].
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Theorem 3.4. The endemic equilibrium point of the HIV/AIDS model (1) is globally
asymptotically stable whenever R0 > 1.

Proof. Consider the quadratic Lyapunov function L : D ∈ R4
+ → R+ defined by

(20) L =
1

2
{(S − S∗∗) + (I − I∗∗) + (Is − I∗∗s ) + (A− A∗∗)}2.

Taking the derivative of (20) gives

L̇ = {(S − S∗∗) + (I − I∗∗) + (Is − I∗∗s ) + (A− A∗∗)} d

dt
(S + I + Is + A)

= {(S − S∗∗) + (I − I∗∗) + (Is − I∗∗s )

+ (A− A∗∗)}{π − µ (S + I + Is + A)− δ (Is + A)

L̇ ≤ {(S − S∗∗) + (I − I∗∗) + (Is − I∗∗s )

+ (A− A∗∗)}{π − µ (S + I + Is + A)}

= µ{(S − S∗∗) + (I − I∗∗) + (Is − I∗∗s )

+ (A− A∗∗)}{(S + I + Is + A)− π

µ
}

(21)

Since N∗∗ = π
µ
, then (21) becomes

L̇ = {(S − S∗∗) + (I − I∗∗) + (Is − I∗∗s ) + (A− A∗∗)}

× {(S + I + Is + A)− (S∗∗ + I∗∗ + I∗∗s + A∗∗)}

= −µ{(S − S∗∗) + (I − I∗∗) + (I − I∗∗s ) + (A− A∗∗)}

× {(S − S∗∗) + (I − I∗∗) + (I − I∗∗s ) + (A− A∗∗)}

= −µ{(S − S∗∗) + (I − I∗∗) + (I − I∗∗s ) + (A− A∗∗)}2.

(22)

Proportionately, the time derivative of the continuosly differentiable function
L is negative semi-definite. That is L̇ ≤ 0. Then, the function L is a Lyapunov
function. Therefore, L̇ = 0 provided S = S∗∗, I = I∗∗, Is = I∗∗s and A = A∗∗. Then,
by LaSalle’s invariance principle [45], the largest invariance set for which L̇ = 0

is the singleton set {E∗∗}, which implies that the endemic equilibrium point of the
HIV/AIDS model (1) is globally asymptotically stable. □
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3.3.5. Sensitivity Analysis. The influence of parameters of the HIV model relative
to the basic reproduction number is examined through sensitivity analysis using
the normalized forward sensitivity index. By definition, the normalized forward
sensitivity index of a variable to a parameter is the ratio of the relative change in
the variable to the relative change in the parameter [46]. Sensitivity analysis is a
salient tool used for measuring the effect and contribution of each parameter of
the basic reproduction number to the output of the model.The normalized forward
sensitivity indices of the basic reproduction number R0, relative to its parameter
q is given by

(23) XR0
p =

∂R0

∂q
× q

R0

.

The sensitivity indices of the associated parameters of the basic reproduction num-
ber is presented in Table 3 where the associated parameters are shown to have
either increasing or decreasing influence on R0.

TABLE 3. The parameter values for optimality system simulations

Parameters Value Sensitivity Indices References
π 0.14 +1.0000 [47]
µ 0.5 yr−1 -1.9327 [26]
β 0.0003 +1.0000 [49]
γ 0.4 +0.0063 [48]
δ 0.02 -0.0009 [49]
d 1.0 yr−1 +0.0178 [26,49]
σ 0.01 -0.0118 [49]
α 0.04 yr−1 -0.0613 [26]
a 0.3 +0.0005 [49]
c 3.0 yr−1 1.0000 [49]

4. NUMERICAL SIMULATIONS

Numerical simulations of the HIV/AIDS model (1) were performed with the
aid of MATLAB computing software in order to corroborate the analytical results
established in section (3) and the results are presented graphically.
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As presented in Figure 2, the effect of parameters representing transmission
probability of disease per contact by an AIDS individual d and transmission prob-
ability of disease per contact by an asymptomatic individual c on the basic repro-
duction number of the HIV. It can be seen that increase in the values of both d

and c increases the value of the basic reproduction number. This is suggesting that
having close contact with symptomatically infected HIV individual and full blown
AIDS individual will enhance the prevalence of HIV in the population. In a similar
manner, Figure 3 depicts the plot of the basic reproduction number against the
parameters representing probability of disease transmission at birth a and effec-
tive contact rate β. It is observed that increment in vertical transmission rate and
effective contact rate increases the value of the basic reproduction number. The
implication of this from the epidemiological viewpoint is that HIV will continue to
persist in the population if effective control measures are not put in place.

Figure 4 is showing how both progression of asymptomatically infected indi-
vidual to full blown AIDS class σ and effective contact rate β affect the basic
reproduction number of the HIV model. It can be deduced that increase in the
values of these parameters will lead to a significant increase in the value of the
basic reproduction number. This from the epidemiological point of view is sug-
gesting that HIV dynamics cannot be managed in the population if efforts are not
set out to curb the dynamics of HIV/AIDS in the population. As shown in Figure 5,
it is observed that the population of asymptomatic HIV infected individuals con-
verge to the HIV/AIDS-free equilibrium. The implication of this is that HIV/AIDS
can be reduced in the population regardless of the initial size of the population
of the model. Figure 6 depicts the global asymptotic behaviour of symptomati-
cally infected HIV individuals around the endemic equilibrium. It is observed that
irrespective of the initial size of the population, the symptomatic population of
infected individuals will converge to a unique endemic equilibrium point.

5. CONCLUSION

A mathematical model for the dynamical spread of human immunodeficiency
virus (HIV) with vertical transmission was formulated and analysed in this study.
Using a system of ordinary differential equation, the model was stratified into four
compartments of susceptible, asymptomatic, symptomatic and full blown AIDS



446 O.A. Adepoju, T.M. Olatunji, S.O. Olanrewaju, and H.O. Ibrahim

FIGURE 2. 3-D plot showing the influence of d and c on the basic
reproduction number

FIGURE 3. Effect of a and β on the basic reproduction number.

FIGURE 4. 3-D plot showing the influence of σ and β on the basic
reproduction number.
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FIGURE 5. Global asymptotic behaviour of the symptomatically in-
fected HIV individual around the disease-free equilibrium.

FIGURE 6. Global asymptotic behaviour of the symptomatically in-
fected HIV individual around the endemic equilibrium point.

individuals respectively. The analytical solution of the model revealed that the
equilibria states of the model were investigated and the basic reproduction num-
ber was obtained using the next generation matrix approach. The disease-free
equilibrium is both locally and globally asymptotically stable when the basic re-
production number is less than unity using the linearized Jacobian and M-matrix
methods. Furthermore, the global asymptotic stability of the endemic equilibrium
point was established using a quadratic Lyapunov function and it was shown that
HIV/AIDS will persist in the population whenever R0 > 1. Moreover, it is perti-
nent to state that the parameters used for the numerical simulation of the model
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were hypothetically chosen. However, real data of HIV/AIDS cases could be used
to fit the model for a more realistic study.
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