ADV MATH SCI JOURNAL Advances in Mathematics: Scientific Journal **13** (2024), no.3, 455–461 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.13.3.11

FUNCTIONS WHOSE DERIVATIVE HAS POSITIVE REAL PART

M. Obradović and V. Ravichandran

ABSTRACT. It is well-known that a normalized analytic function for which the quantity 1 + zf''(z)/f'(z) lies in the half-plane $\operatorname{Re} w > -1/2$ is close-to-convex and hence univalent. In this paper, we show that the derivative of the function f has positive real part if the quantity $1 + \alpha z f''(z)/f'(z)$ with $\alpha > 0$ lies in the sector $|\arg w| < \arctan(\alpha)$.

1. INTRODUCTION AND DEFINITIONS

Let \mathcal{A} be the class of functions f analytic in the open unit disc $\mathbb{D} = \{z : |z| < 1\}$ and normalized by the condition f(0) = 0 = f'(0) - 1. Let \mathcal{S} be its subclass consisting of univalent functions. A function $f \in \mathcal{A}$ is convex if $f(\mathbb{D})$ is convex and it is starlike if $f(\mathbb{D})$ is starlike with respect to the origin. Analytically, a function $f \in \mathcal{A}$ is convex if 1 + zf''(z)/f'(z) takes values in the right half-plane. The function $f \in \mathcal{A}$ is starlike if zf'(z)/f(z) takes values in the right half-plane. If these quantities takes values in the half-plane $\{z \in \mathbb{C} : \operatorname{Re} z > \alpha\}$, the functions are respectively called convex functions of order α and starlike functions of order

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 30C45, 30C80.

Key words and phrases. starlike functions, convex functions, close-to-convex functions, functions with positive real part.

Submitted: 26.07.2024; Accepted: 12.08.2024; Published: 27.09.2024.

 α . A function $f \in \mathcal{A}$ is close-to-convex if there exists a convex function g such that

Re
$$\left(\frac{f'(z)}{g'(z)}\right) > 0 \quad (z \in \mathbb{D}).$$

Close-to-convex functions were introduced and studied by Kaplan [4]. Functions in A that are convex, starlike and close-to-convex are univalent. Kaplan [4] (see Duren [1]) proved that a locally univalent analytic function f is close-to-convex if and only if

$$\int_{\theta_1}^{\theta_2} \operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) d\theta > -\pi \quad (z = re^{i\theta})$$

for each r (0 < r < 1) and for each pair of real numbers θ_1 and θ_2 with $\theta_1 < \theta_2$. This characterization of close-to-convexity shows that a function $f \in A$ satisfying the condition

is close-to-convex function and hence univalent. We note that the condition given by (1.1) is equivalent to the condition

A function that satisfy (1.1) is sometime called a convex function of order -1/2. Though a convex function is starlike of order 1/2, a function satisfying the condition (1.1), or equivalently (1.2) is not necessarily for the function to have derivative with positive real part in \mathbb{D} as the next example shows.

Example 1. Define the function $f_1 : \mathbb{D} \to \mathbb{C}$ by

$$f_1(z) = \frac{z(1-\frac{z}{2})}{(1-z)^2}$$

For this function f_1 , we have

$$\operatorname{Re}\left(1+\frac{zf_1''(z)}{f_1'(z)}\right) = \operatorname{Re}\left(1+3\frac{z}{1-z}\right) > -\frac{1}{2} \quad (z \in \mathbb{D}).$$

This shows that f_1 is convex of order -1/2. Since

$$f_1'(z) = \frac{1}{(1-z)^3},$$

456

we have, at z = i,

$$\operatorname{Re} f_1'(i) = -\frac{1}{4} < 0.$$

Therefore, it follows that

 $\operatorname{Re} f_1'(z) < 0$

at the point z = i and hence in a neighbourhood of it. Therefore, the function f_1 is not a function whose derivative has positive real part(see Fig. 1).

FIGURE 1. The image of \mathbb{D} under $f_1(z)$ and $f'_1(z)$

We note that under some restriction on the coefficients, we can prove starlikeness of the convex functions of order -1/2. For example, Miller and Mocanu [3, p. 68] have shown a convex function f of order -1/2 is starlike of order 1/2 if its second coefficient vanishes, that is, f''(0) = 0. In this paper, we investigate bounded turningness of the function f when the quantity $1 + \alpha z f''(z)/f'(z)$ takes values in certain sector in the right half-plane where $\alpha \ge 1$. In particular, we show that a function $f \in \mathcal{A}$ is has derivative f' with positive real part if

$$\left| \arg\left(1 + \frac{2}{3} \frac{z f''(z)}{f'(z)} \right) \right| < \arctan\frac{2}{3} \approx 0.588 \quad (z \in \mathbb{D}).$$

Our proof uses the following result of Nunokawa in [5] in the theory of first order differential subordination:

Lemma 1.1. Let $p : \mathbb{D} \to \mathbb{C}$ be analytic, p(0) = 1 and $p(z) \neq 0$ for $z \in \mathbb{D}$. Suppose that there exists a point $z_0 \in \mathbb{D}$ such that Re p(z) > 0 for $|z| < |z_0|$ and Re $p(z_0) =$

0, where $p(z_0) \neq 0$, i.e. $p(z_0) = ia$, a is real and $a \neq 0$. Then we have

$$\frac{z_0 p'(z_0)}{p(z_0)} = ik$$

where $k \geq \frac{1}{2} \left(a + \frac{1}{a}\right)$, when a > 0, and $k \leq \frac{1}{2} \left(a + \frac{1}{a}\right)$, when a < 0.

2. MAINE RESULTS

Theorem 2.1. Let $\alpha > 0$. A function $f \in A$ has derivative f' with positive real part if it satisfies the inequality

(2.1)
$$\left| \arg \left(1 + \alpha \frac{z f''(z)}{f'(z)} \right) \right| < \arctan(\alpha) \quad (z \in \mathbb{D}).$$

Proof. Define the function $p : \mathbb{D} \to \mathbb{C}$ by

$$p(z) = f'(z).$$

Then, we have p(0) = 1 and

$$\frac{zp'(z)}{p(z)} = \frac{zf''(z)}{f'(z)}.$$

Using this, we see that the inequality (2.1) is equivalent to

(2.2)
$$\left| \arg \left(1 + \alpha \frac{zp'(z)}{p(z)} \right) \right| < \arctan(\alpha) \quad (z \in \mathbb{D}).$$

By applying Lemma 1.1, we show that $\operatorname{Re} p(z) > 0$ for all $z \in \mathbb{D}$ for any analytic function p satisfying the inequality (2.2).

First, we show that $p(z) \neq 0$ for all $z \in \mathbb{D}$. On a contrary, suppose that there exists $z_1 \in \mathbb{D}$ such that z_1 is the zero of order m of the function p. Then, it follows that $p(z) = (z - z_1)^m p_1(z)$, where m is positive integer, p_1 is analytic in \mathbb{D} with $p_1(z_1) \neq 0$, and further

$$\frac{zp'(z)}{p(z)} = \frac{mz}{z - z_1} + \frac{zp'_1(z)}{p_1(z)}.$$

This means that the real part of the right hand side can tend to $-\infty$ when $z \to z_1$, which is a contradiction to the assumption of the theorem regarding the argument. Thus, we have $p(z) \neq 0$ for all $z \in \mathbb{D}$.

Now, suppose that the inequality (2.2) holds but p does not satisfy $\operatorname{Re} p(z) > 0$ for some $z \in \mathbb{D}$. Since p(0) = 1, there exists a point $z_0 \in \mathbb{D}$ such that $\operatorname{Re} p(z) > 0$ for $|z| < |z_0|$ and $\operatorname{Re} p(z_0) = 0$, where $p(z_0) \neq 0$. If we put $p(z_0) = ia$, a is real and

458

 $a \neq 0$, then by Lemma 1.1 we have

$$\frac{z_0 p'(z_0)}{p(z_0)} = ik_1$$

where $k \ge \frac{1}{2}(a+1/a)$, when a > 0, and $k \le \frac{1}{2}(a+1/a)$, when a < 0. Next, define the function $\Phi : \mathbb{D} \to \mathbb{C}$ by

$$\Phi(z) = 1 + \alpha \frac{zp'(z)}{p(z)}.$$

Then, we have

$$\operatorname{Re}\Phi(z_0) = 1, \quad \operatorname{Im}\Phi(z_0) = \alpha k.$$

For a > 0, this implies that

$$\arg \Phi(z_0) = \arctan(\alpha k) \ge \arctan\left(\alpha \frac{1}{2}(a+\frac{1}{a})\right) \ge \arctan(\alpha).$$

Similarly, for a < 0:

$$\arg \Phi(z_0) = \arctan(\alpha k) \le \arctan\left(\alpha \frac{1}{2}(a+\frac{1}{a})\right) \le \arctan(\alpha).$$

Combining the cases a > 0 and a < 0, we receive

$$|\arg \Phi(z_0)| \ge \arctan(\alpha),$$

which is a contradiction to the relation (2.2). This show that $\operatorname{Re} p(z) > 0$ for all $z \in \mathbb{D}$ proving that f' has positive real part in \mathbb{D} .

For a convex function f, we know that $f'(z) \prec 1/(1-z)^2$ and therefore f' does not have positive real part. Also, we have $|\arg(1 + zf''(z)/f'(z))| < \pi/2 \approx 1.5708$ for a convex function f. If we restrict the argument to smaller number, we have the following result (obtained by taking $\alpha = 1$ in Theorem 2.1).

Corollary 2.1. A function $f \in A$ has derivative f' with positive real part if it satisfies the inequality

$$\left| \arg \left(1 + \frac{z f''(z)}{f'(z)} \right) \right| < \arctan 1 = \pi/4 \quad (z \in \mathbb{D}).$$

Theorem 2.1 for the case $\alpha = 2/3$ gives the following result.

Corollary 2.2. A function $f \in A$ has derivative f' with positive real part if it satisfies the inequality

$$\left| \arg\left(1 + \frac{2}{3} \frac{z f''(z)}{f'(z)} \right) \right| < \arctan\frac{2}{3} \approx 0.588 \quad (z \in \mathbb{D}).$$

Corollary 2.3. A function $f \in A$ has derivative f' with positive real part if it satisfies the inequality

$$\left|\frac{zf''(z)}{f'(z)}\right| < 1 \quad (z \in \mathbb{D}).$$

Proof. It is known [2] that the largest disc centered at z = a inside the sector $\{w : |\arg w| < \gamma \pi/2\}$ is of radius $R_a = a \sin(\pi \gamma/2)$. It then follows that the disc with center 1 and radius

$$\frac{\alpha}{\sqrt{\alpha^2 + 1}}$$

is contained in the sector $\{w : |\arg w| < \arctan(\alpha)\}$. By Theorem 2.1, it follows that the function f has derivative f' with positive real part if

$$\left|\alpha \frac{zf''(z)}{f'(z)}\right| = \left|\left(\alpha \frac{zf''(z)}{f'(z)} + 1\right) - 1\right| < \frac{\alpha}{\sqrt{\alpha^2 + 1}} \quad (z \in \mathbb{D}).$$

Thus, the function f has derivative f' with positive real part if

$$\left|\frac{zf''(z)}{f'(z)}\right| < \frac{1}{\sqrt{\alpha^2 + 1}} \quad (z \in \mathbb{D}).$$

The desired result follows if we let $\alpha \to 0$.

References

- [1] P.L. DUREN: Univalent function, Springer-Verlag, New York, 1983.
- [2] A. GANGADHARAN, V. RAVICHANDRAN, T. N. SHANMUGAM: Radii of convexity and strong starlikeness for some classes of analytic functions, J. Math. Anal. Appl. 211(1) (1997), 301–313.
- [3] S.S. MILLER, P.T. MOCANU: *Differential subordinations*, Marcel Dekker, Inc., New York, Bazel, 2000.
- [4] W. KAPLAN: Close-to-convex schlicht functions, Michigan Math. J., 1 (1952), 169–185.
- [5] M. NUNOKAWA: On properties of non-Caratheodory functions, Proc. Japan Acad. 68, Ser.A (1992), 152-153.
- [6] M. OBRADOVIĆ, N. TUNESKI: New criteria for starlikeness in the unit disc, arXiv 2405.07997v1-29 Apr. 2024

460

DEPARTMENT OF MATHEMATICS, FACULTY OF CIVIL ENGINEERING, UNIVERSITY OF BELGRADE, BULEVAR KRALJA ALEKSANDRA 73, 11000, BELGRADE, SERBIA. *Email address*: obrad@grf.bg.ac.rs

DEPARTMENT OF MATHEMATICS, NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI-620 015, INDIA *Email address*: ravic@nitt.edu; vravi68@gmail.com