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GLOBAL STABILITY OF AN SEIS EPIDEMIC MODEL WITH
BEDDINGTON-DEANGELIS INFECTION RATE

Soufiane Elkhaiar

ABSTRACT. In this paper, the global dynamic behaviors of an SEIS epidemic model
with Beddington-DeAngelis infection rate are investigated. This model takes into
account constant recruitment, death from the disease, and the phenomenon of la-
tency. Under some hypotheses, it is shown that the global dynamics is determined
by the basic reproduction number R0. If R0 is less than unity, the disease-free
equilibrium is both locally and globally stable and the disease dies out. If R0

is greater than unity, sufficient conditions for the global stability of the endemic
equilibrium are obtained by the geometric approach of Li and Muldowney. Some
numerical simulations are also presented to confirm the analytical results.

1. INTRODUCTION

During the last years, mathematical modeling has become a very powerful tool
in epidemiology, allowing researchers to predict infectious diseases, assess the im-
pact of interventions, and inform public health policies. By dividing a population
into distinct compartments, such as susceptible, infected, vaccinated, quarantined,
and recovered individuals, these models provide a quantitative framework for un-
derstanding the dynamics of epidemic transmission (see [3] and the references
therein).
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A crucial aspect of many infectious diseases is the existence of an incubation
period, during which individuals are infected but not yet infectious. This latency
period can influence significantly the spread of the disease. To capture this phe-
nomenon, various modeling approaches have been developed:

(i) Delayed SIR Model: This model incorporates a time delay into the differ-
ential equations to represent the incubation period.

(ii) SEIR Model: This model introduces an additional compartment for ex-
posed individuals, who are infected but not yet infectious.

Both approaches provide valuable insights into the dynamics of infectious disease
transmission [1,10].

In the mathematical analysis of epidemiological models, a great interest has
been given to the infection rate of susceptible individuals through their contacts
with infectious. In many epidemic models, two types are frequently used: the

bilinear incidence rate βSI and the standard incidence rate
βSI

N
. The first one is

based on the law of mass action, for the second one, it may be a good approxima-
tion if the number of available partners is large enough and everybody could not
make more contacts than is practically feasible [22]. It has been suggested by sev-
eral authors that the disease transmission process may have a saturation incidence
rate [4,21–24].

In 1975, Beddington and DeAngelis ( [2, 7]) introduced a the functional
βS(t)I(t)

1+α1+α2I(t)
, where β is the transmission rate of disease, α1 is a measure of inhi-

bition for the susceptible population, and α2 is a measure of inhibition for the in-
fected population. Beddington-DeAngelis infection rate has been studied by many
authors in epidemic models [1,10,16,19], and clearly, this includes three forms:

(i) The bilinear incidence rate βSI where β is the transmission rate ( [8,13]),
with α1 = α2 = 0;

(ii) The saturated incidence rate of the form βSI
1+α1S

( [23,24]), with α2 = 0;
(iii) The saturated incidence rate of the form βSI

1+α2I
[4,11,21,22]), with α1 = 0.

In 2001, Fan et al. [8], have studied the SEIS epidemic model with bilinear in-
cidences rates that incorporates constant recruitment, disease-caused death and
disease latency:
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(1.1)


dS
dt

= Λ− µS(t)− βS(t)I(t) + δI(t),
dE
dt

= βS(t)I(t)− (µ+ σ)E(t)
dI
dt

= σE(t)− (µ+ α + δ)I(t),

The global stability of a disease-free equilibrium and an endemic equilibrium was
investigated respectively by using Lyapunov function theory and geometric ap-
proach. It was proven that the dynamics of 1.1 are completely determined by the
basic reproduction number.It was proven that the global dynamics is completely
determined by the basic reproduction number R0 : If R0 < 1, the disease-free equi-
librium is globally stable and the disease dies out. If R0 > 1, a unique endemic
equilibrium is globally stable in the interior of the feasible region and the disease
persists at the endemic equilibrium.

Motivated by the aforementioned considerations, this article explores an SEIS
epidemic model incorporating a Beddington-DeAngelis infection rate, as depicted
in Figure 1:

(1.2)


dS
dt

= Λ− µS(t)− βS(t)I(t)
1+α1S(t)+α2I(t)

+ δI(t),
dE
dt

= βS(t)I(t)
1+α1S(t)+α2I(t)

− (µ+ σ)E(t)
dI
dt

= σE(t)− (µ+ α + δ)I(t),

where S(t) represents the number of individuals who are susceptible to the dis-
ease, E(t) represents the number of individuals who are exposed, I(t) denotes the
number of infectious individuals, Λ is the recruitment rate of the population, β the
transmission rate or infection rate coeffcient, µ is the natural death of the popula-
tion, σ is the rate at which exposed individuals become infectious, α is the death
rate due to disease, δ ≥ 0 is the rate at which infectious individuals lose immunity
and returns to susceptible class, and α1 and α2 are the parameter that measure the
inhibitory effect.

FIGURE 1. Sensitivity analysis of SEIS epidemic model parameters
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The next part of this paper is organized as follows. In section 2, the positivity
and boundedness of solutions as well as the formulation of the basic reproduc-
tion number. In section 3, we establish the existence of two positive equilibria.
in section 4, we show that global asymptotic stability of the disease-free equilib-
rium depend only on the basic reproduction number. In section 5, we apply the
geometric approach of Li and Muldowney to prove the global stability of endemic
equilibrium. In section 6, we study the sensitivity analysis of the parameters.
Numerical simulations are also presented in section 7 to illustrate the obtained
results. Finally a brief discussion is given in section 8 to conclude this paper.

2. MODEL ANALYSIS

2.1. Positivity and boundedness of solutions. To begin, we establish the follow-
ing proposition regarding the positivity and boundedness of the solutions of model
1.2.

Proposition 2.1. All solutions of system 1.2 with nonnegative initial data remain
nonnegative and bounded for all t ≥ 0.

Proof. The positivity of S(t) is established for all t ≥ 0. Suppose, for the sake of
contradiction, that there exists a time t1 > 0 where S(t1) = 0. Substituting into
the first equation of system 1.2, we find S ′(t1) = A + δI(t1) > 0, which implies
S(t) < 0 for t ∈ (t1 − ϵ, t1), where ϵ > 0 is sufficiently small. This contradicts the
assumption that S(t) > 0 for t ∈ [0, t1). Therefore, S(t) > 0 for all t ≥ 0.

In similar fashion it can be shown that E(t) > 0 and I(t) > 0 for all t ≥ 0.
Finally, to demonstrate the boundedness of the solutions, the total population is

denoted by N(t) = S(t) + E(t) + I(t), then we have

dN(t)

dt
= Λ− µN(t)− αI(t),

and lim supN(t) ≤ N0 = Λ
µ

. We can study the three-dimensional system (1.2) in
the following domain which is positively invariant:

T = {(S,E, I) ∈ R3
+ : S + E + I ≤ N0}.

□
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2.2. The basic reproduction number.

Theorem 2.1. The basic reproduction number of model(1.2) is given by

R0 =
σβΛ

(µ+ σ)(µ+ α + δ)(µ+ α1Λ)
.

Proof. The basic reproduction number is determined by means of the next-generation
method see [20]. Writing the model (1.2) as follows

dx

dt
= F − V

where x = (E, I)T , and

F(x) =

[
βSI

1+α1S+α2I

0

]
,

and

V(x) =

[
(µ+ σ)E

−σE + (µ+ α + δ)I

]
.

The jacobian matrix of F(x) and V(x) evaluated at I = 0, E = 0 and S = Λ
µ

are
respectively given by :

F =

0 β Λ
µ

1+α1
Λ
µ

0 0

 .

and

V =

[
µ+ σ 0

−σ µ+ α + δ

]
.

The next-generation matrix is:

M = FV −1.

where

V −1 =
1

det(V )

[
µ+ α + δ 0

σ µ+ σ

]
,

and
det(V ) = (µ+ σ)(µ+ α + δ).

Thus,

V −1 =
1

(µ+ σ)(µ+ α + δ)

[
µ+ α + δ 0

σ µ+ σ

]
,
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M =
1

(µ+ σ)(µ+ α + δ)

[
βσΛ

µ+α1Λ
β(µ+σ)Λ
µ+α1Λ

0 0

]
.

Finally, the dominant eigenvalue of M , which is R0, is computed as follows:

R0 =
βΛσ

(µ+ σ)(µ+ α + δ)(µ+ α1Λ)
.

□

3. EXISTENCE OF EQUILIBRIA

The following theorem presents the existence and uniqueness of equilibria:

Theorem 3.1. System (1.2) always has a disease-free equilibrium E0 = (Λ
µ
, 0, 0)

which exists for all parameter values. On the other hand, if R0 > 1, then system
(1.2) also admits a unique endemic equilibrium: E∗ = (S∗, E∗, I∗).

Proof. The steady state of model (1.2) S,E, I satisfying the following equations.

(3.1)


Λ− µS − βSI

1+α1S+α2I
+ δI = 0,

βSI
1+α1S+α2I

− (µ+ σ)E = 0,

σE − (µ+ α + δ)I = 0.

If I = 0, we have E = 0, and S = Λ
µ

, therefore the disease-free equilibrium
E0 = (Λ

µ
, 0, 0) of (1.2) exists.

If I ̸= 0, we have

I∗ =
(µ+ α1Λ)(R0 − 1)

µα2 + ( (µ+σ)(µ+α+δ)
σ

− δ)(α1(R0 − 1) + R0µ
Λ
)
,

E∗ =
(µ+ α + δ)I∗

σ
,

and

S∗ =
Λ− ( (µ+σ)(µ+α+δ)

σ
− δ)I∗

(µ+σ)(µ+α+δ)
σ

.

Hence, there exist unique endemic equilibrium P ∗ = (S∗, E∗, I∗) in the interior of
T . This complete the proof. □
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4. GLOBAL STABILITY OF THE DISEASE-FREE EQUILIBRIUM

We have the following theorem on the global asymptotic stability of the disease-
free equilibrium E0 of (1.2.

Theorem 4.1.

(i) If R0 ≤ 1, then the disease free equilibrium E0 is globally asymptotically
stable in T .

(ii) If R0 > 1, then the disease free equilibrium E0 is unstable.

Proof. Set V (t) = σE(t) + (µ+ σ)I(t), then

V ′ =
(µ+ σ)(µ+ α + δ)

σ
σI(t)(

βS(t)

1 + α1S(t) + α2I(t)
− 1)

≤ (µ+ σ)(µ+ α + δ)

σ
σI(t)(R0 − 1),

We obtain that if R0 ≤ 1, then V ′ ≤ 0. Furthermore, V ′ = 0 if and only if
I = 0. Therefore the largest compact invariant set in {(S,E, I) ∈ T/V ′ = 0}, when
R0 ≤ 1, is the singleton {E0}. By LaSalle’s Invariance Principle ( [12], p.30) we
conclude that E0 is globally asymptotically stable in T . □

5. STABILITY ANALYSIS OF THE ENDEMIC EQUILIBRIUM

5.1. Local stability. In this section, we prove the following theorem on the local
asymptotic stability of the endemic equilibrium E∗ of (1.2).

Theorem 5.1. If R0 > 1, then the endemic equilibrium E∗ is locally asymptotically
stable.

Proof. Let x = S−S∗, y = E−E∗ and z = I− I∗. Then by linearizing system (1.2)
around E∗, we have

(5.1)


dx
dt

= −(µ+ βI∗(1+α2I∗)
(1+α1S∗+α2I∗)2

)x(t)− ( βS∗(1+α1S∗)
(1+α1S∗+α2I∗)2

− δ)z(t),
dy
dt

= −(µ+ σ)y(t) + βI∗(1+α2I∗)
(1+α1S∗+α2I∗)2

)x(t) + ( βS∗(1+α1S∗)
(1+α1S∗+α2I∗)2

z(t)),
dz
dt

= σy(t)− (µ+ α + δ)z(t)

The characteristic equation associated to system (5.1)is given by

(5.2) λ3 + a2λ
2 + a1λ+ a0 = 0,
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where

a2 = 3µ+ α + σ + δ +
βI∗(1 + α2I

∗)

(1 + α1S∗ + α2I∗)2
,

a1 = σ(
(µ+ σ)(µ+ α + δ)

σ
− βS∗(1 + α1S

∗)

(1 + α1S∗ + α2I∗)2
)

+ (2µ+ α + δ + σ)(µ+
βI∗(1 + α2I

∗)

(1 + α1S∗ + α2I∗)2
),

a0 = µσ(
(µ+ σ)(µ+ α + δ)

σ
− βS∗(1 + α1S

∗)

(1 + α1S∗ + α2I∗)2
)

+
βI∗(1 + α2I

∗)

(1 + α1S∗ + α2I∗)2
(
(µ+ σ)(µ+ α + δ)

σ
− δ)σ.

By the second and third equations in system (1.2), we have

(5.3)
(µ+ σ)(µ+ α + δ)

σ
>

βS∗(1 + α1S
∗)

(1 + α1S∗ + α2I∗)2
.

By using (5.3), we can easily obtain that

ai > 0, i = 0, 1, 2,

and
a1a2 − a0 > 0.

Hence, by the Routh-Hurwitz criterion, we have the local stability of P ∗ for R0 > 1.
This concludes the proof of Theorem 5.1. □

5.2. Global stability. In this section, we will use the geometric approach (see
[13, 18]) to study the global stability of the endemic equilibrium P ∗. sufficient
conditions are obtained ensuring that P ∗ is globally asymptotically stable when
R0 > 1.

To show the existence of a compact set in the interior of T that is absorbing for
(1.2) is equivalent to proving that (1.2)is uniformly persistent, which means that
there exists a constant λ > 0 such that every solution (S(t), E(t), I(t)) of (1.2)
with (S(0), E(0), I(0)) in the interior of T satisfies

(5.4) lim inf
t→∞

|(S(t), E(t), I(t))| ≥ λ

Here λ is independent of initial data in T , see [13]. We can demonstrate the
following result.
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Proposition 5.1. The system (1.2) is uniformly persistent if and only if R0 > 1.

Proof. By Theorem 4.3 in [9], we have that uniform persistence of system (1.2) is
equivalent to instability of the disease-free equilibrium E0 = (Λ

µ
, 0, 0). Combining

the stability analysis for this equilibrium in Theorem 4.1 and Theorem 4.3 in [9],
we know that system (1.2) is uniformly persistent if and only if R0 > 1. □

Now, we have the following theorem about global stability of endemic equilib-
rium P ∗.

Theorem 5.2. Suppose that R0 > 1. Then there exists δ > 0 such that the unique
endemic equilibrium P ∗ is globally asymptotically stable when δ ≤ δ.

Proof. By Proposition 5.1, when R0 > 1, there exists a compact set K in the interior
of T that is absorbing for (1.2). The proof of the Theorem consists of choosing a
suitable vector norm in R3 and a 3× 3 matrix-valued function A(x) such that

(5.5) q2 := lim sup
t→∞

sup
x0∈K

1

t

∫ t

0

µ(B(x(s, x0)))ds < 0

where B = AgA
−1 + AJ [2]A−1, x = (S,E, I) and f(x) denote the vector field of

(1.2), i.e. dx(t)
dt

= f(x), Af is obtained by replacing each entry aij of A by its
derivative in the direction of f , and µ(B) is the the Lozinskĭi measure of B with
respect to the induced matrix norm.

The Jacobian matrix associated to (1.2) is given by:

J =

−µ− βI(1+α2I)
(1+α1S+α2I)2

0 − βS(1+α1S)
(1+α1S+α2I)2

+ δ
βI(1+α2I)

(1+α1S+α2I)2
−µ− σ βS(1+α1S)

(1+α1S+α2I)2

0 σ −µ− α− δ

 .

The second additive compound matrix J [2] of the Jacobian matrix J is given by

J [2] =

−2µ− σ − βI(1+α2I)
(1+α1S+α2I)2

βS(1+α1S)
(1+α1S+α2I)2

βS(1+α1S)
(1+α1S+α2I)2

− δ

σ −2µ− α− δ − βI(1+α2I)
(1+α1S+α2I)2

0

0 βI(1+α2I)
(1+α1S+α2I)2

−2µ− α− σ − δ

 .

Consider the Lozinskĭi measure µ of A with respect to a vector norm ∥.∥ in R(
n
2),

that is:

µ = lim
h→0+

∥I + hA∥ − 1

h
.
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Set the function A(x) = A(S,E, I) = diag{1, E
I
, E
I
}. Then,

AfA
−1 = diag{0, E

′

E
− I ′

I
,
E ′

E
− I ′

I
},

where the matrix Af is obtained by replacing each entry aij of A(x) by its derivative
in the direction of f . The matrix B = AfA

−1 + AJ [2]A−1 can be written in the
following block form

(5.6) B =

(
B11 B12

B21 B22

)
,

where B11 = −2µ− σ − βI(1+α2I)
(1+α1S+α2I)2

,

B12 =
I

E

(
βS(1+α1S)

(1+α1S+α2I)2
βS(1+α1S)

(1+α1S+α2I)2
− δ
)
, B21 =

(
σE
I

0

)

B22 =

(
E′

E
− I′

I
− 2µ− δ − α− βI(1+α2I)

(1+α1S+α2I)2
0

βI(1+α2I)
(1+α1S+α2I)2

E′

E
− I′

I
− 2µ− σ − α− δ

)

Let (u, v, w) denote the vectors in R3 ∼= R(
3
2), we choose a norm in R3 as

|(u, v, w)| = max{|u|, |v|+ |w|},

and let µ1 denote the Lozinskĭi measure with respect to norm |.|. Using the method
of estimating µ in [17], we have

(5.7) µ(B) ≤ sup(g1, g2),

where

(5.8) g1 = B11 + |B12|,

(5.9) g2 = µ1(B22) + |B21|,

where µ1(B22) is the Lozinskĭi mesure of 2x2 matrix B22 with respect to l1 norm in
R2, |B12| and |B21| are operators norms of B12 and B21. We have

(5.10) µ1(B11) = −2µ− σ − βI(1 + α2I)

(1 + α1S + α2I)2
,
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(5.11) |B21| =
σE

I
,

(5.12) |B12| =
I

E
max

{
βS(1 + α1S)

(1 + α1S + α2I)2
, | βS(1 + α1S)

(1 + α1S + α2I)2
− δ|

}
,

and to calculate µ1(B22), we add the absolute value of the off-diagonal one in
each column of B22, and then take the maximum of two sums, see ( [6], p.41), We
obtain:

(5.13) µ1(B22) =
E ′

E
− I ′

I
− 2µ− δ − α.

Then,

g1 = −2µ− σ − βI(1 + α2I)

(1 + α1S + α2I)2

+
I

E
max

{
βS(1 + α1S)

(1 + α1S + α2I)2
, | βS(1 + α1S)

(1 + α1S + α2I)2
− δ|

}
,

(5.14)

(5.15) g2 =
E ′

E
− I ′

I
− 2µ− δ − α +

σ.E

I

Rewriting (1.2) gives us

E ′

E
=

βSI

E(1 + α1S + α2I)
− (µ+ σ),(5.16)

I ′

I
=

σE

I
− (µ+ δ + α).(5.17)

Substituting equations 5.16 and 5.17 into 5.14 and 5.15 respectively, gives us,

g1 =
E ′

E
− µ− βSI

E(1 + α1S + α2I)
− βI(1 + α2I)

(1 + α1S + α2I)2

+
I

E
max

{
βS(1 + α1S)

(1 + α1S + α2I)2
, | βS(1 + α1S)

(1 + α1S + α2I)2
− δ|

}
,

(5.18)

and

(5.19) g2 =
E ′

E
− µ.
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Since (1.2 is uniformly persistent when R0 > 1 (see Proposition 5.1), there exists
λ > 0 and t0 > 0 such that t > t0 implies

S(t) ≥ λ, E(t) ≥ λ, and I(t) ≥ λ,

for all (S(0), E(0), I(0)) ∈ K.
Set

δ := inf{ 2βS(1 + α1S)

(1 + α1S + α2I)2
: λ ≤ S, I ≤ A

µ
} > 0,

If δ ≤ δ, then,

max

{
βS(1 + α1S)

(1 + α1S + α2I)2
, | βS(1 + α1S)

(1 + α1S + α2I)2
− δ|

}
=

βS(1 + α1S)

(1 + α1S + α2I)2

So, we can get easily

g1 =
E ′

E
− µ− βI(1 + α2I)

(1 + α1S + α2I)2
+

βSI(1 + α1S)

(1 + α1S + α2I)2E

− βSI

E(1 + α1S + α2I)
≤ E ′

E
− µ.

(5.20)

By 5.20 and 5.19, it is easy to show that

(5.21) µ(B) ≤ E ′

E
− µ.

Thus, if δ ≤ δ, and for t > t0 we have

(5.22)
1

t

∫ t

0

µ(B)dt ≤ 1

t

∫ t0

0

µ(B)dt+
1

t
log

E(t)

E(t0)
− µ

t− t0
t

≤ −µ

2
,

and finally,

(5.23) q2 < 0.

This concludes the proof. □

6. SENSITIVITY ANALYSIS

In this section, we perform the sensitivity analysis of R0 to find ways to choose
suitable parameters. Sensitivity indices measure the relative change in a state
variable when a parameter changes. The normalized direct sensitivity index of a
variable to a parameter is the ratio of the relative change in the variable to the
relative change in the parameter. When the variable is a differentiable function of
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the parameter, the sensitivity index can also be defined using partial derivatives
(see [5]):

Definition 6.1. The normalized forward sensitivity index of a variable, X, that de-
pends differentiably on a parameter θ, is defined as:

ΓX
θ =

∂X

∂θ
.
θ

X
.

A high sensitivity index indicates that a small change in the parameter θ pro-
duces a large change in X, which means that X is very sensitive to θ. Conversely,
an index close to zero indicates low sensitivity.

Sensitivity indices play a fundamental role in model analysis and calibration, as
they help identify the parameters that most influence the model’s behavior and
thus guide priorities for intervention or data collection measures.

A straightforward computation gives:
ΓR0
σ = µ

µ+σ
, ΓR0

β = 1, ΓR0
α = −α

µ+α+δ
, ΓR0

α1
= −α1Λ

µ+α1Λ
,

ΓR0
µ = −µ

µ+σ
− µ

µ+α1A
− µ

µ+α+δ
, ΓR0

Λ = µ
µ+α1A

, ΓR0
δ = −δ

µ+α+δ
.

TABLE 1. Parameter values for Model 1.2

Parameter Λ β σ µ α α1 δ
Value 100 0.05 0.04 0.02 0.01 0.02 0.01

TABLE 2. Sensitivity index table for Parameter values in TABLE 1

Parameter Index of Sensitivity Order of sensitivity importance
Λ 0.009 7
β 1 1
σ 0.333 4
µ -0.843 3
α -0.25 5
α1 -0.990 2
δ -0.25 5

By Table 2 and Fig. 6, the most sensitive parameters for the basic reproduction
number R0 are the transmission rate β, followed by α1, then the natural death µ.
The least sensitive parameter is the recruitment rate Λ.
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FIGURE 2. Sensitivity analysis of SEIS epidemic model parameters

7. NUMERICAL SIMULATIONS

In this section we perform numerical simulations to illustrate the the theoretical
results obtained.

FIGURE 3. The dynamic behavior of compartiments S, E, and I in
Model 1.2 with S(0)=1000, E(0)=500, I(0)=450, and Parameter
values in TABLE 1. In this case R0 = 41.254 > 1 .
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FIGURE 4. The dynamic behavior of compartiments S, E, and I in
Model 1.2 with Parameter values in TABLE 3. In this case R0 =
0.0072 < 1.

TABLE 3. Parameter values for Model 1.2

Parameter Λ β σ µ α α1 δ S(0) E(0) I(0)
Value 30 0.023 0.04 0.02 0.03 2 1 2000 1500 1000

FIGURE 5. The dynamic behavior of compartiments S, E, and I in
Model 1.2 with Parameter values in TABLE 4. In this case R0 =
0.155 < 1.
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TABLE 4. Parameter values for Model 1.2

Parameter Λ β σ µ α α1 δ S(0) E(0) I(0)
Value 40 0.5 0.7 0.9 0.9 0.5 0.5 100 50 40

TABLE 5. Parameter values for Model 1.2

Parameter Λ β σ µ α α1 δ S(0) E(0) I(0)
Value 0.45 2.5 0.07 0.09 0.09 0.95 0.05 10 5 4

FIGURE 6. The dynamic behavior of compartiments S, E, and I in
Model 1.2 with Parameter values in TABLE 5. In this case R0 =
3.871 > 1.

8. DISCUSSION AND CONCLUSION

In summary, SEIS model with Beddington-DeAngelis infection rate provide a
more realistic description of epidemic dynamics by accounting for the limited abil-
ity of an infectious disease to spread unchecked through a population. These
models exhibit rich behaviors such as bifurcations and multiple equilibria, and
their global dynamics are often governed by the basic reproduction number R0.
Understanding these dynamics helps in predicting the long-term behavior of an
epidemic and in determining effective control strategies.

In this paper we formulated and analyzed an SEIS epidemic model with Bedding-
ton-DeAngelis infection rate (1.2). We have established the existence of two pos-
sible equilibrium points as well as their local and global stability. In Theorem 3.1,
we prove that the model(1.2) always has a disease-free equilibrium E0 = (A

µ
, 0, 0)

which exists for all parameter values. On the other hand, if the basic reproduction
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number R0 is greater than unity, then model (1.2) also admits a unique endemic
equilibrium P∗ = (S∗, I∗, R∗). In Theorem 4.1 we prove that E0 is globally asymp-
totically stable if R0 < 1, and unstable if R0 > 1. We prove in Theorem 5.1 that
P ∗ is locally asymptotically stable. In Theorem 5.2, by means of the geometric
approach we prove the global stability of the endemic equilibrium P ∗.
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