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SOME PROPERTIES OF TOTALLY ANTI-MAGIC GRAPHS

Hamid Kulosman

ABSTRACT. We call an undirected graph with n edges totally anti-magic if in every
labelling of edges by the numbers 1, 2, . . . , n all nonzero vertex sums are distinct.
We study totally anti-magic disjoint unions of stars and adding whiskers to any
graph to achieve a totally anti-magic graph.

1. INTRODUCTION

For all the terminology the reader can consult [1].
A graph Γ = (V (Γ), E(Γ)) consists of a finite vertex set V (Γ) and an edge set,

where an edge is an unordered pair of distinct vertices of Γ. We will use the
notation x− y to denote an edge. When we have an edge x− y, we say that x and
y are adjacent. The number of edges adjacent to a vertex v is called the degree of
the vertx v. If Γ and ∆ are two graphs with disjoint vertex sets, the disjoint union
of Γ and ∆ is the graph Γ ∪ ∆ whose set of vertices is V (Γ ∪ ∆) = V (Γ) ∪ V (∆)

and the set of edges is E(Γ ∪∆) = E(Γ) ∪ E(∆).

An edge labelling (or shortly labelling) of a graph Γ is an assignement of a posi-
tive integer (i.e., label) to each edge of Γ. When we have a labelling on Γ, we say
that Γ is a labelled graph. Let v be a vertex of a labelled graph Γ. The vertex sum
of v, denoted by sum(v), is the sum of the labels assigned to all edges adjacent to
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v. If no edge is adjacent to v, then sum(v) = 0. If v is a vertex of a graph Γ with
n edgess and v is adjacent to k edges, then we define sps(v) = 1 + 2 + · · ·+ k (sps
stands for “smallest possible sum") and bps(v) = n+ (n− 1)+ · · ·+ (n− k+1) (bps
stands for “biggest possible sum").

Definition 1.1. A graph Γ with |E(Γ)| = n is called totally anti-magic if for every
labelling of Γ by the numbers 1, 2, . . . , n all the vertices of nonzero degree have distinct
vertex sums.

On Figures 1-9 we give all totally anti-magic graphs that have up to four vertices.

Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Figure 6 Figure 7 Figure 8 Figure 9

2. TOTALLY ANTI-MAGIC DISJOINT UNIONS OF STARS

A star is a graph having a vertex (called root) to which all edges are adjacent. A
star having zero edges consists of the root only. We denote a star with k vertices
by S(k). If S(k1), S(k2), S(k3), . . . , S(kn) are n stars with disjoint vertex sets, we
denote S(k1, k2, . . . , kn) the graph S(k1) ∪ S(k2) ∪ · · · ∪ S(kn) and call this graph a
disjoint union of n stars.

Proposition 2.1.

(i) For any n ≥ 2 there are infinitely many n-tuples (k1, k2, . . . , kn) such that
S(k1, k2, . . . , kn) is totally anti-magic.

(ii) For any fixed k1 for which there exists a totally anti-magic S(k1, k2, . . . , kn),
the number of distinct totally anti-magic disjoint unions of n stars with the
smallest star having k1 elements is finite.
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Proof. (i) Consider the following conditions:

sps(k1) > k1 + k2 + · · ·+ kn,(1)

bps(k1) < sps(k2),(21)

bps(k2) < sps(k3),(22)

. . .

bps(kn−1) < sps(kn).(2n−1)

We claim that these conditions are sufficient for S(k1, k2, . . . , kn) to be totally anti-
magic.

Indeed, suppose the conditions are satisfied. Let the edges of S(k1, k2, . . . , kn)
be labelled by the numbers 1, 2, 3, . . . , n in any way. The condition (1) implies

(3) sps(ki) > k1 + k2 + · · ·+ kn

for any i = 1, 2, . . . , n. The condition (3) implies that

(4) sum(ui) > sum(vp,q)

for any p = 1, 2, . . . , n, q = 1, 2, . . . , kp, i = 1, 2, . . . , n. The conditions (21)− (2n−1)

imply that

(5) sum(u1) < sum(u2) < · · · < sum(un).

Because of (4) and (5) and the obvious fact that the sums at two different leaves
are different, we can conclude that S(k1, k2, . . . , kn) is totally anti-magic.

The condition (1) can be written as

(6) k1 + 2k2 + 2k3 + · · ·+ 2kn < k2
1.

The condition (2i) can be written as

m+ (m− 1) + · · ·+ (m− (ki − 1)) <
ki+1(ki+1 + 1)

2
,

where m = k1 + k2 + · · ·+ kn. This in turn can be written as

(7i) k2
i +

n∑
j=1, j ̸=i

2kikj + ki < k2
i+1 + ki+1.
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The following condition is stronger than (7i):

k2
i +

n∑
j=1, j ̸=i

2kikj < k2
i+1.

It can be written as

1 + 2
n∑

j=1, j ̸=i

kj
ki

<

(
ki+1

ki

)2

,

i.e.,

(8i) 1 + 2
i−1∑
j=1

kj
ki

+ 2
n∑

j=i+1

kj
ki

<

(
ki+1

ki

)2

.

The following condition is stronger than (8.i):

(9i) 2i− 1 + 2
n∑

j=i+1

kj
ki

<

(
ki+1

ki

)2

.

The condition (6) can be written as

(10) 1 + 2
k2
k1

+ 2
k3
k1

+ · · ·+ 2
kn
k1

< k1.

Thus the conditions (10) and (9i) for i = 1, 2, . . . , n − 1, are sufficient for
S(k1, k2, . . . , kn) to be totally anti-magic.

If we now introduce the following notation:

A1 =
k2
k1

, A2 =
k3
k2

, . . . , An−1 =
kn
kn−1

,

we can write these conditions in the following way:

2n− 3 + 2An−1 < A2
n−1,(9′n−1)

2n− 5 + 2An−2 + 2An−2An−1 < A2
n−2,(9′n−2)

2n− 7 + 2An−3 + 2An−3An−2 + 2An−3An−2An−1 < A2
n−3,(9′n−3)

. . .

1 + 2A1 + 2A1A2 + 2A1A2A3 + · · ·+ 2A1A2 . . . An−1 < A2
1,(9′1)

1 + 2A1 + 2A1A2 + 2A1A2A3 + · · ·+ 2A1A2 . . . An−1 < k1.(10′)

For S(k1, k2, . . . , kn) to be totally anti-magic it is enough to find positive integers
A1, A2, . . . , An−1, k1 satisfying these conditions. Clearly there are infinitely many
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positive integers An−1 satisfying (9′n−1). If we fix such an An−1, then there are
infinitely many positive integers An−2 satisfying (9′n−2). And so on. There are
infinitely many positive integers A1 satisfying (9′1) when An−1, An−2, . . . , A2 are
fixed. (All this is true because of the form of the quadratic inequalities that we
get.) Finally, if we fix one such integer A1, we can select k1 in infinitely many
ways so that (10′) holds. Selection of A1, A2, . . . , An−1 and k1 uniquely determines
k2, k3, . . . , kn. Thus (i) is proved.

(ii) Let k1 be fixed. Note that the condition (1), i.e., (6), is necessary for
S(k1, k2, . . . , kn) to be totally anti-magic. [ If it is not satisfied, we can label S(u1)

by 1, 2, . . . , k, and then the label k1(k1+1)
2

will appear in some of S(u2), S(u3), . . . ,

S(un). So some leaf of S(u2), S(u3), . . . , S(un) will have the same sum as u1. ] It
follows from (6) that k2

1 > 2ki (i = 2, 3, . . . , n), i.e., ki <
k21
2

. So there are only
finitely many options for k2, k3, . . . , kn. The statement (ii) is proved. □

Example 1. Let n = 3. Let A2 = 4, A1 = 2A2 + 3 = 11, k1 = A2
1 − A1 + 2 = 112.

Then k2 = A1 · k1 = 1232, k3 = A2 · k2 = 4928. So we have an example of a totally
anti-magic disjoint union of three stars: S(112, 1232, 4928).

Remark 2.1. There are infinitely many (k1, k2, . . . , kn) with 1 ≤ k1 ≤ k2 ≤ · · · ≤ kn

such that S(k1, k2, . . . , kn) is totally anti-magic. This is true because in the proof of
the previous proposition we can choose k1 in infinitely many ways and each choice
results in a totally anti-magic S(k1, k2, . . . , kn).

Question 2.1. We can raise the following questions:

(i) For any n ≥ 3, what is the smallest k1 = k1(n) for which there exists a totally
anti-magic S(k1, k2, . . . , kn)?

(ii) What is the smallest k1 for which there exists a totally anti-magic S(k1, k2, k3)
with k1 ≤ k2 ≤ k3? What is the smallest k2 for that k1? What is the smallest
k3 for those k1 and k2?

If S(k1) and S(k2) are two disjoint stars with roots u1 and u2 respectively, then
the graph Γ = (V (S(k1))∪ V (S(k2)), E(S(k1))∪E(S(k2))∪{u1 − u2}) is called the
root-connected two stars. We denote Γ by S(k1, k2).

Proposition 2.2. There are infinitely many pairs (k1, k2) of positive integers such
that S(k1, k2) is totally anti-magic.
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Proof. We reason similarly as in Proposition 2.1. It is easy to see that the following
two conditions

sps(u1) > k1 + k2 + 1,(11)

bps(u1) < sps(u2)(12)

are sufficient for S(k1, k2) to be totally anti-magic. These two conditions have the
following form:

2k2 < k2
1 + k1 + 1,(13)

k2
1 + 2k1k2 + 3k1 < k2

2 + k2.(14)

We will now replace these two conditions by stronger conditions that are sufficient
for S(k1, k2) to be totally anti-magic. We replace (3) by

(15) 2k2 < k2
1 + k1.

We replace (4) by
k2
1 + 2k1k2 + 3k2 < k2

2 + k2,

i.e., with
k2
1 + 2k1k2 + 2k2 < k2

2,

and then we replace this condition by an even stronger condition

(16) k2
1 + 4k1k2 < k2

2.

Let A = k2
k1

. Dividing (15) by k1 and (16) by k2
1 we obtain

2A < k1 + 1,(17)

1 + 4A < A2.(18)

The equation (18) has infinitely many solutions A. For any A which is a solution
of (18) we can find infinitely many k1 which are solutions of (17). Hence there
are infinitely (k1, k2) such that S(k1, k2) is totally anti-magic. □

Example 2. The smallest positive integer solution of (8) is A = 5 and then for that
A the smallest solution of (7) is k1 = 10. hence k2 = A · k1 = 50. Thus we have a
totally anti-magic graph S(10, 50).
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In the next theorem we will characterize all totally anti-magic graphs Γ =

S(k1, k2) with 1 ≤ k1 ≤ k2.

Theorem 2.1. The disjoint union S(k1, k2) (with 1 ≤ k1 ≤ k2) of two stars S(k1) and
S(k2) is totally anti-magic if and only if (k1, k2) is one of the pairs from the following
three sets:

(i) {(4, 5), (5, 5), (5, 8), (5, 9), (6, 7), (6, 8), (6, 11), (6, 12), (6, 14)};
(ii) the set of all (k1, k2) such that k1 ≥ 7 and⌈

2k1 − 1 +
√

8k2
1 + 1

2

⌉
≤ k2 ≤

k1(k1 − 1)

2
− 1;

(iii) the set of all (k1, k2) such that k1 ≥ 7,

k1 ≤ k2 ≤
⌈
2k1 − 1 +

√
8k2

1 + 1

2

⌉
− 1

and k1 + k2 ≡ 1 or 2 mod 4.

Proof. Consider the following conditions:

sps(k1) > m,(19)

k1 + k2 ≡ 1 or 2 mod 4,(20)

bps(k1) < sps(k2).(21)

It is easy to prove that:
(a) the condition (19) is necessary for Γ to be totally anti-magic;
(b) the condition “(19) and ((20) or (21))" is sufficient for Γ to be totally anti-

magic.
Also it is easy to see that all Γ with k1 = 1, 2, or 3 are not totally anti-magic, so

we assume from now on that k1 ≥ 4.
The condition (19) can be written as

(22) k2 ≤
k1(k1 − 1)

2
− 1.

Hence, due to (a) above, in order to find all totally anti-magic Γ’s, we need to
consider only the possibilities:

(23) k2 = k1, k1 + 1, k1 + 2, . . . ,
k1(k1 − 1)

2
− 1.
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The condition (21) is equivalent with

(24) k2 >
2k1 − 1−

√
8k2

1 + 1

2
.

Note that
2k1 − 1−

√
8k2

1 + 1

2
> k1.

The condition
2k1 − 1−

√
8k2

1 + 1

2
<

k1(k1 − 1)

2
− 1

is equivalent with

3k1 + 1 +
√

8k2
1 + 1 < k2

1.

If k1 > 6, we have

1 +
√
8k2

1 + 1 < 3k1,

hence
3k1 + 1 +

√
8k2

1 + 1 < 6k1 < k2
1.

Thus if k1 > 6, then in the sequence (23) all pairs (k1, k2) with

(25)
2k1 − 1−

√
8k2

1 + 1

2
≤ k2 ≤

k1(k1 − 1)

2
− 1

are totally anti-magic. It is easy to see that for k1 = 4, 5, 6 the following are totally
anti-magic pairs (k1, k2):

(26) {(4, 5), (5, 5), (5, 8), (5, 9), (6, 7), (6, 8), (6, 11), (6, 12), (6, 14)}.

In order to find all totally anti-magic pairs (k1, k2), in addition to (25) and (26),
we have to consider (for k1 ≥ 7) the pairs (k1, k2) such that

(27) k1 ≤ k2 ≤
⌈
2k1 − 1 +

√
8k2

1 + 1

2

⌉
− 1.

Claim. Assume k1 ≥ 7. A pair (k1, k2), such that k2 is from the sequence (27), is
totally anti-magic if and only if k1 + k2 ≡ 1 or 2 mod 4.

Proof of the claim. (⇒) Follws from (b) above.
(⇐) Suppose that k1 ≥ 7, k2 is from the sequence (27) and k1 = k2 ≡ 0 or 3

mod 4. We will show that then Γ is not totally anti-magic.
We first consider the case k1 ≡ 0 mod 4. Let k1 = 4l (l ≥ 2). We have the

following table:
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TABLE 1.

k1 k2 bps(u1)− sps(u2)

4l 4l 16l2

4l 4l + 1 16l2 − 1 tam
4l 4l + 2 16l2 − 3 tam
4l 4l + 3 16l2 − 6
· · · · · · · · ·
4l 4l + t 16l2 − t(t+1)

2

· · · · · · · · ·

We need to show that in each in which k1 + k2 ≡ 0 or 3 mod 4, the pair (k1, k2)
is not totally anti-magic. Since⌈

2k1 − 1 +
√
8k2

1 + 1

2

⌉
− 1 = 4l +

⌈√
128l2 + 1− 1

2

⌉
− 1,

every t that we have in Table 1 satisfies

(28) t ≤ ⌈
√
128l2 + 1− 1

2
⌉ − 1.

Note that we consider only t ≡ 0 or 3 mod 4. For such t’s the sum 1+2+ · · ·+ t is
even. Now fix a t from {0, 1, 2, . . . , ⌈

√
128l2+1−1

2
⌉ − 1}, such that t ≡ 0 or 3 mod 4.

We want to show that S(k1, k2) is not totally anti-magic. We will find a lebelling
such that sum(u1) = sum(u2). Initially, put the biggest possible sum on the first
star and the smallest possible sum on the second star. So the labels on the first
star are:

(29) 4l + t+ 1, 4l + t+ 2, . . . , 8l + t.

The labels on the second star are:

(30) 1, 2, . . . , t,

(31) t+ 1, t+ 2, . . . , 4l + t.

Consider the following possible switches (4l of them)
4l + t+ 1 ↔ t+ 1

4l + t+ 2 ↔ t+ 2

... ... ...

8l + t ↔ 4l + t
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We call them “4l-switches" since the difference in each of them is 4l. Initially,

(32) sum(u1)− sum(u2) = 16l2 − t(t+ 1)

2
> 0.

If we perform 2l 4l-switches, then

(33) sum(u1)− sum(u2) = −t(t+ 1)

2
< 0.

Hence, there is an integer x ≥ 0 and < 2l such that

(34) x · 4l ≤ 8l2 − t(t+ 1)

4
,

but

(35) (x+ 1) · 4l > 8l2 − t(t+ 1)

4
,

For this x we have

(36) 0 ≤ 8l2 − t(t+ 1)

4
− 4xl < 4l.

Denote d = 8l2 − t(t+1)
4

− 4xl. Since 0 ≤ d < 4l (that is (36)), we can select a
label a on the first star and the label b on the second star such that a− b = d. (The
differences between the labels on the first star and the labels on the second star
go from 1 to 8l + t − 1.) We first switch these two labels. This switch eliminates
the possibilities of two 4l-switches. But we still have at our disposition 4l − 2

4l-switches. So we can now do x 4l-switches.The sum of differences in all these
switches is precisely 8l2 − k(k+1)

4
. Hence after these switches we have sum(u1) =

sum(u2).
Next we consider the case k1 ≡ 1 mod 4. Let k1 = 4l+ 1 (l ≥ 2). We have Table

2.
We need to show that in each row in which k1 + k2 ≡ 0 or 3 mod 4, the pair

(k1, k2) is not totally anti-magic. Since⌈
2k1 − 1 +

√
8k2

1 + 1

2

⌉
− 1 = 4l + 1 +

⌈√
8(4l + 1)l2 + 1− 1

2

⌉
− 1,

every t that we have in the table (30) satisfies

t ≤ ⌈8(4l + 1)2 + 1

2
⌉ − 1.
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TABLE 2. Table

k1 k2 bps(u1)−sps(u2)

4l + 1 4l + 1 (4l + 1)2 tam
4l + 1 4l + 2 (4l + 1)2 − 1
4l + 1 4l + 3 (4l + 1)2 − 3
4l + 1 4l + 4 (4l + 1)2 − 6 tam

... ... ...
4l + 1 4l + t (4l + 1)2 − (t+1)

2

... ... ...

Note that we consider only t ≡ 2 or 3 mod 4. For such t’s the sum (t−1)t
2

is odd (so
(4l + 1)2 − (t−1)t

2
is even).

Now fix a t from {0, 1, 2, . . . , ⌈8(4l+1)2+1
2

⌉ − 1}, such that t ≡ 2 or 3 mod 4. We
want to show that S(k1, k2) is not totally anti-magic. We will find a lebelling such
that sum(u1) = sum(u2). Initially, put the biggest possible sum on the first star and
the smallest possible sum on the second star. So the labels on the first star are:

(37) 4l + t+ 1, 4l + t+ 2, . . . , 8l + t+ 1.

The labels on the seond star are

(38) 1, 2, . . . , t− 1, t, t+ 1, . . . , 4l + t.

Note that if t = 1, the graph Γ = S(4l + 1, 4l + 1) is totally anti-magic since the
sum 1 + 2 + · · · + 8l + 2 = (8l+2)(8l+3)

2
is odd. Let t > 1 (i.e., t − 1 ≥ 0). Consider

the following switches (4l + 1 of them):

4l + t+ 1 ↔ t− 1

4l + t+ 2 ↔ t

... ... ...

8l + t+ 1 ↔ 4l + t− 1

We call them “4l+2-switches" since the difference in each of them is 4l+2. The
difference bps(u1)−sps(u2) from Table B can be written as:

(4l + 1)2 − (t− 1)t

2
= 4l(4l + 2)− t2 − t− 2

2
,
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where both 4l(4l+2) and t2−t−2
2

are even. The half of that difference is 2l(4l+2)−
t2−t−2

4
. Initially

(39) sum(u1)− sum(u2) = 4l(4l + 2)− t2 − t− 2

2
> 0.

If we perform 2l 4l + 2-switches, then

(40) sum(u1)− sum(u2) = −t2 − t− 2

2
< 0.

Hence there is an integer x ≥ 0 and < 2l such that

(41) x · (4l + 2) ≤ 2l(4l + 2)− t2 − t− 2

4
,

but

(42) (x+ 1) · (4l + 2) > 2l(4l + 2)− t2 − t− 2

4
.

For this x we have

(43) 0 ≤ 2l(4l + 2)− t2 − t− 2

4
− x · (4l + 2) < 4l + 2.

Denote d = 2l(4l+2)− t2−t−2
4

−x·(4l+2). Since 0 ≤ d < 4l+2 (that is (34)), we can
select a label a on the first star and a label b on the second star such that a− b = d.
(The difference between the labels on the first star and the labels on the second
star go from 1 to 8l + t.) We first switch these two labels. This switch eliminates
the possibilities of two 4l + 2-switches. But we still have at our disposition 4l − 1

4l+ 2-switches. So we can now do x 4l+ 2-switches. The sum of differences in all
these switches is precisely 2l(4l + 2)− t2−t−2

4
. Hence after these switches we have

sum(u1) = sum(u2). □

3. TRANSFORMING A GRAPH INTO A TOTALLY ANTI-MAGIC GRAPH BY ADDING

WHISKERS

Let Γ be a graph, x ∈ V (Γ), y /∈ V (Γ). Then the edge x − y is called a whisker
for Γ. We say that the graph Γ′ = (V (Γ) ∪ {y}, E(Γ) ∪ {x− y}) is obtained from Γ

by adding the whisker x− y to it.

Conjecture. To any graph Γ one can add finitely many whiskers so that the new
graph obtained in that way is totally anti-magic.
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Proposition 3.1. Let Γ be a connected graph with ≤ 4 vertices. Then the above
conjecture holds for Γ.

Proof. Figures 10-12 represent all connected graphs having up to four vertices
that are not totally anti-magic. The proof for graphs on Figures 10 and 11 follows
from Proposition 2.2. We proceed with a proof for the graph on Figure 12. The
proof is similar to the proof of Proposition 2.1. It is easy to see that we need to
add whiskers to each of the four vertices , otherwise the new graph would not
be totally anti-magic. We will show that we can add ki whiskers to the root ui

(i = 1, 2, 3, 4), as on Figure 13, with 1 ≤ k1 ≤ k2 ≤ k3 ≤ k4. Denote the resulting
graph Γ.

The following conditions are sufficient for Γ to be totally anti-magic.

sps(u1) > k1 + k2 + k3 + k4 + 4,(44)

bps(u1) < sps(u2),(45)

bps(u2) < sps(u3),(46)

bps(u3) < sps(u4),(47)

Figure 10 Figure 11 Figure 12

Figure 13

u1 u2

u3u4
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The conditon (44) can be written as

2k2 + 2k3 + 2k4 + 2 < k2
1 + 3k1.

Since it is easy to see that k1 ≥ 2 the following condition is stronger than this one:

2k2 + 2k3 + 2k4 < k2
1 + 2k1,

i.e.,

(48) 2
k2
k1

+ 2
k3
k1

+ 2
k4
k1

< k1.

For any n, we will denote the sum 1 + 2 + 3 + · · · + n by Σ(n). The conditions
(45)-(47) can be written as

Σ(k1 + k2 + k3 + k4 + 4) < Σ(k2 + k3 + k4 + 2) + Σ(k2 + 2),

Σ(k1 + k2 + k3 + k4 + 4) < Σ(k1 + k3 + k4 + 2) + Σ(k3 + 2),

Σ(k1 + k2 + k3 + k4 + 4) < Σ(k1 + k2 + k4 + 2) + Σ(k4 + 2).

After some calculations these conditions can be written as

k2
1 + 2k1k2 + 2k1k3 + 2k1k4 + 9k1 + 4k3 + 4k4 + 12 < k2

2 + k2,

k2
2 + 2k1k2 + 2k2k3 + 2k2k4 + 4k1 + 9k2 + 4k4 + 12 < k2

3 + k3,

k2
3 + 2k1k3 + 2k2k3 + 2k3k4 + 4k1 + 4k2 + 9k3 + 12 < k2

4 + k4.

We will replace these conditions by the following stronger ones:

k2
1 + 2k1k2 + 2k1k3 + 2k1k4 + 9k1 + 4k3 + 4k4 + 12 < k2

2 + k2,

k2
2 + 2k1k2 + 2k2k3 + 2k2k4 + 4k1 + 9k2 + 4k4 + 12 < k2

3 + k3,

k2
3 + 2k1k3 + 2k2k3 + 2k3k4 + 4k1 + 4k3 + 9k3 + 12 < k2

4 + k4.

We will replace these conditions by the following stronger ones:

k2
1 + 2k1k2 + 2k1k3 + 2k1k4 + 8k1 + 4k3 + 4k4 + 12 < k2

2,

k2
2 + 2k1k2 + 2k2k3 + 2k2k4 + 4k1 + 8k2 + 4k4 + 12 < k2

3,

k2
3 + 2k1k3 + 2k2k3 + 2k3k4 + 4k1 + 4k2 + 8k3 + 12 < k2

4.
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The following are stronger conditions than these:

k2
1 + 10k1k2 + 6k1k3 + 6k1k4 + 12 < k2

2,

k2
2 + 6k1k2 + 10k2k3 + 6k2k4 + 12 < k2

3,

k2
3 + 6k1k3 + 6k2k3 + 10k3k4 + 12 < k2

4.

and these are stronger than these:

k2
1 + 14k1k2 + 10k1k3 + 10k1k4 < k2

2,

k2
2 + 10k1k2 + 14k2k3 + 10k2k4 < k2

3,

k2
3 + 10k1k3 + 10k2k3 + 14k3k4 < k2

4.

These conditions in turn can be written as

1 + 14
k2
k1

+ 10
k3
k1

+ 10
k4
k1

<

(
k2
k1

)2

,

1 + 10
k2
k1

+ 14
k3
k1

+ 10
k4
k1

<

(
k3
k2

)2

,

1 + 10
k1
k3

+ 10
k2
k3

+ 14
k4
k3

<

(
k4
k3

)2

.

Finally we replace these by the following stronger conditions:

1 + 14
k2
k1

+ 10
k3
k1

+ 10
k4
k1

<

(
k2
k1

)2

,(49)

11 + 14
k3
k2

+ 10
k4
k2

<

(
k3
k2

)2

,(50)

21 + 14
k4
k3

<

(
k4
k3

)2

.(51)

We now introduce the following notation:

A1 =
k2
k1

, A2 =
k3
k2

, A3 =
k4
k3

.
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Then the conditions (48)-(51) can be written as

21 + 14A3 < A2
3,(52)

11 + 14A2 + 10A2A3 < A2
2,(53)

1 + 14A1 + 10A1A2 + 10A1A2A3 < A2
1,(54)

2A1 + 2A1A2 + 2A1A2A3 < k1.(55)

We can solve (52) for A3, then fixing one solution A3 for (52) we can solve (53) for
A2, then fixing one solution A2 for (53) we can solve (54) for A3, finally fixing one
solution A3 for (54) we can solve (55). From these solutions we get k1, k2, k3, k4.
If we add that many whiskers to the vertices on Figure 13 the resulting graph is
totally anti-magic. □
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