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NUMERICAL STUDY OF GAS EXPANSION IN A BOX USING THE
GENERAL FOUR VELOCITY BROADWELL MODEL

Pahon Lakou Defoou, Kokou Anani Agosseme1, and Amah Séna d’Almeida

Abstract. In this paper we investigate the expansion of a gas in a box in the

scope of discrete kinetic theory. The box is initially at rest and half-full filled

of a gas. The general four velocity discrete model of Broadwell is retained for

the modelling and the resulting mild problem is solved numerically using a frac-

tional step method. The starting motion into the empty part of the box and the

behaviour at large times of the gas is studied. An equilibrium state is attained

after a transitional phase where the behaviour of the macroscopic variables of

the flow depend on the set of the velocities of the model. The influence of the set

of the velocities of the model vanishes in the steady state.

1. Introduction

After the pioneering works of Broadwell who solved the Couette and the Rayle-
igh flows and the shock wave problem analytically using discrete velocity models
[?,1], many problems of rarefied gas dynamics have been investigated in the scope
of discrete kinetic theory. Owing to the fact that global existence question is
well understood in one space dimension for discrete velocity models [4], several
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analytical and numerical results in good accordance whith those obtained using
other methods of resolution of the Boltzmann Equation have been established [4,
6–8]. Recent progress in the proof of the existence of solution for boundary value
and mild problems for discrete velocity models in more than one dimension [5,
11–13] allow to investigate gas dynamics problems in higher spatial dimensions.

The aim of this paper is to solve numerically the problem of the expansion of
a gas in a box initially at rest and half-full filled of a gas.

The paper is organized as follows. In section 2 we briefly present the model
used to perfom the computations and state the mathematical problem in consid-
eration in the paper. The numerical method of resolution is described in section
3. In section 4 we present and analyse the numerical results obtained.

2. Statement of the problem

2.1. The discrete velocity model. The general plane four velocity discrete mod-
els of Broadwell denoted by Bθ are among the simplest discrete velocity mod-
els and have been used to study initial and boundary value problems in one
dimension [4], [6] and to build exact solutions [10]. In the basis (e⃗1, e⃗2) of or-
thonormal reference (O, e⃗1, e⃗2) of the plane R

2 its velocities are u⃗1 = c(cosθ,sinθ),
u⃗2 = c(−sinθ,cosθ), u⃗3 = −u⃗2, u⃗4 = −u⃗1, where θ = angle(e⃗1, u⃗1) accounts of the
orientation of the discrete velocity model with respect to the reference.

Figure 1. The model

Let N ′i (t
′,x′, y′) be the number density of the gas molecules with velocity u⃗i , i =

1,2,3, ,4 at the time t′ and at the position M(x′, y′) the kinetic equations of the
model are:
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(2.1)
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The total density ρ′ and the macroscopic velocity
−→
U ′(U ′,V ′) of a gas described

by the model are defined by:

ρ′ = N ′1 +N ′2 +N ′3 +N ′4,

ρ′U ′ = cos(θ)[N ′1 −N
′
4]− sin(θ)[N ′2 −N

′
3],

ρ′V ′ = sin(θ)[N ′1 −N
′
4] + cos(θ)[N ′2 −N

′
3].

(2.3)

The Maxwellian densities of the model associated with the macroscopic variables
ρ′, U ′ and V ′ are given by the relations:

N ′1M =
N ′

4

[
1 + cos(2θ)

(
u2 − v2

)
+ 2uv sin(2θ) + 2u cos(θ) + 2v sin(θ)

]
,

N ′2M =
N ′

4

[
1− cos(2θ)

(
u2 − v2

)
− 2uv sin(2θ) + 2v cos(θ)− 2u sin(θ)

]
,

N ′3M =
N ′

4

[
1− cos(2θ)

(
u2 − v2

)
− 2uv sin(2θ)− 2v cos(θ) + 2u sin(θ)

]
,

N ′4M =
N ′

4

[
1 + cos(2θ)

(
u2 − v2

)
+ 2uv sin(2θ)− 2u cos(θ)− 2v sin(θ)

]
,

(2.4)

with u = U ′/c et v = V ′/c.

2.2. The mathematical problem. We consider a gas flow described by the gen-
eral four velocity discrete model in a rectangular box of lenght L and width h

(0 < h ≤ L). The walls of the box are impermeable. Initially the box is divided
in two compartments of the same capacity. The first compartment is filled by a
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gas at rest and the second compartment is empty.The origin O of the orthonor-
mal reference introduced above is chosen so that the edges of the box are located

on the lines x′ = −L
2

, x′ =
L
2

, y′ = −h
2

and y′ =
h
2

and the angle θ belongs to the

interval
[
0, π2

[
.

Figure 2. The box

The initial densities are denoted by N ′i (0,x
′, y′) = N ′i,0, i = 1,2,3,4. We use the

diffuse reflection boundary conditions on the walls. The microscopic densities
of the discrete gas in Maxwellian equilibrium with a wall, respectively denoted

by N±iw and Niw± at y = ±h
2

and x = ±L
2

, are the Maxwellian densities associated

with 1 and the longitudinal and transversal velocities of the wall respectively
denoted by U±w and V ±w . Let λ± be the respective accommodation coefficients.
The boundary conditions of diffuse reflection are written in the form [2, 8]:

N ′1(t′,−L/2, y′) = λ−(t′,−L/2, y′)N1w− ,

N ′3(t′,−L/2, y′) = λ−(t′,−L/2, y′)N3w− ,

N ′2(t′,L/2, y′) = λ+(t′,L/2, y′)N2w+
,

N ′4(t′,L/2, y′) = λ+(t′,L/2, y′)N4w+
,

N ′1(t′,x′,−h/2) = λ−(t′,x′,−h/2)N−1w,

N ′2(t′,x′,−h/2) = λ−(t′,x′,−h/2)N−2w,

N ′3(t′,x′,h/2) = λ+(t′,x′,h/2)N+
3w,

N ′4(t′,x′,h/2) = λ+(t′,x′,h/2)N+
4w.

(2.5)
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In the sequel, we assume naturally that the walls are at rest. The impermeability
of the box’s walls means that the normal velocity at each wall vanishes. Therefore:

U⃗ ·n⃗ = 0,(2.6)

where n⃗ denote the inward-pointing (i.e. into the gas) unit vectors normal to the
wall.

The problem is put in dimensionless form. The reference quantities are ρ′0 ,the
initial total density, for the density, c for the velocity, t0 for the time and L and h

for the length respectively for the x′ axis and the y′ axis. t0 is the characteristic
time of the unsteady flow. The dimensionless variables are:

x = x′/L, y = y′/h, t′ = t/t0, ε = h/L, Kn = (sn0L)−1,St = L/ct0,

Ni = N ′i /n0, ρ = ρ′/ρ′0, ρ0 = ρ′0/ρ
′
0 = 1,

u0 = U0/c, v0 = V0/c, u = U/c, v = V /c.

(2.7)

The parameter ε is the aspect ratio of the box, Kn is the Knudsen number and St
is the Strouhal number. The dimensionless problem to solve is:

St
∂N1

∂t
+ cos(θ)

∂N1

∂x
+ 1

ε sin(θ)
∂N1

∂y
= 2

Kn (N2N3 −N1N4) ,

St
∂N1

∂t
− sin(θ)

∂N1

∂x
+ 1

ε cos(θ)
∂N1

∂y
= 2

Kn (N1N4 −N2N3) ,

St
∂N1

∂t
+ sin(θ)

∂N1

∂x
− 1

ε cos(θ)
∂N1

∂y
= 2

Kn (N1N4 −N2N3) ,

St
∂N1

∂t
− cos(θ)

∂N1

∂x
− 1

ε sin(θ)
∂N1

∂y
= 2

Kn (N2N3 −N1N4) ,

Ni(0,x,y) = Ni,0, i = 1,2,3,4,

N3w−N1(t,−1/2, y)−N1w−N3(t,−1/2, y) = 0,

N4w+
N2(t,1/2, y)−N2w+

N4(t,1/2, y) = 0,

N−2wN1(t,x,−1/2)−N−1wN2(t,x,−1/2) = 0,

N+
4wN3(t,x,1/2)−N+

3wN4(t,x,1/2) = 0,

cos(θ)[N1(t,−1/2, y)−N4(t,−1/2, y)]
−sin(θ)[N2(t,−1/2, y)−N3(t,−1/2, y)] = 0,

cos(θ) [N1(t,1/2, y)−N4(t,1/2, y)]

(2.8)
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−sin(θ) [N2(t,1/2, y)−N3(t,1/2, y)] = 0,

sin(θ) [N1(t,x,−1/2)−N4(t,x,−1/2)]
+cos(θ) [N2(t,x,−1/2)−N3(t,x,−1/2)] = 0,

sin(θ) [N1(t,x,1/2)−N4(t,x,1/2)]
+cos(θ) [N2(t,x,1/2)−N3(t,x,1/2)] = 0,

where (t,x,y) ∈ [0,T ]×[−1/2,1/2]×[−1/2,1/2] with T a positive arbitrary number.
The problem (2.8) is solved using the classic fractional step method [3, 10].

The numerical resolution is done in two steps. Firstly the problem is solved for a
spatial homogeneous flow (equations (2.9)), and secondly it is solved in the free
molecular regime (equations (2.10)).

StN
m+ 1

2
1 −Nm

1
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Kn

(
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1 Nm+1/2
4

)
((2.9).1)
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3
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3
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∆t + cos(θ) ∂
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(
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1

)
+ 1

ε sin(θ) ∂
∂y

(
Nm+1

1

)
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2

2
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(
Nm+1

2

)
+ 1

ε cos(θ) ∂
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(
Nm+1

2

)
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StN
m+1
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2

3
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∂x

(
Nm+1

3

)
− 1

ε cos(θ) ∂
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(
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3

)
= 0 ((2.10).3)

StN
m+1
4 −N

m+ 1
2

4
∆t − cos(θ) ∂

∂x

(
Nm+1

4

)
− 1

ε sin(θ) ∂
∂y

(
Nm+1

4

)
= 0 ((2.10).4)

.(2.10)

In the above equations the discretisation of time interval is made with step
∆t and Nm

i and Nm+1/2
i represent the values of the function Ni at t = m∆t and

t = (m+ 1/2)∆t respectively. The resolution of equations (2.9) gives:
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N
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2
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Nm
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)(
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)(
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2
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(
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1 +Nm
3

)(
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4
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(
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2
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4
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(2.11)

where σ = 2St∆t
Kn . The quantities Nm

i and Nm+1/2
i depend on x and y. We perform

a discretisation of the domain [−1/2,1/2] × [−1/2,1/2] in a regular grid with the
steps ∆x = 1/(J − 1) and ∆y = 1/(K − 1) where J, K ∈ N \ {0,1}. Let Nm+1

i;j,k be the

value of Nm+1
i at the point Mjk(xj , yk) ∈ [0,1] × [−1/2,1/2]. The Nm+1

i;j,k are the so-
lutions of the following equations which are finite difference approximations of
the equations (2.10):

St
Nm+1

1;j,k −N
m+ 1

2
1;j,k

∆t
+ cos(θ)

Nm+1
1;j,k −N

m+1
1;j−1,k

∆x + 1
ε sin(θ)

Nm+1
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m+1
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∆y = 0 ((2.12).1),

St
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2
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∆t
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m+1
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St
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3;j,k −N
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2
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∆t
+ sin(θ)

Nm+1
3;j,k −N

m+1
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∆x − 1
ε cos(θ)

Nm+1
3;j,k+1−N

m+1
3;j,k

∆y = 0 ((2.12).3),

St
Nm+1

4;j,k −N
m+ 1

2
4;j,k

∆t
− cos(θ)

Nm+1
4;j+1,k−N

m+1
4;j,k

∆x − 1
ε sin(θ)

Nm+1
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m+1
4;j,k

∆y = 0 ((2.12).4)

(2.12)

3. Consistence and stability

The analysis developped in this section is based on the stability and the con-
vergence study of the numerical scheme done in [9, 10].

3.1. Consistence. Consider the equations ((2.9).1) and ((2.12).1). By addition
one can write

nm+1
1;j,k −n

m
1;j,k

∆t
+ cos(θ)

nm+1
1;j+1,k−n

m+1
1;j,k

∆x + 1
ε sin(θ)

nm+1
1;j,k −n

m+1
1;j,k−1

∆y

= (
√

2+
√

3)
Kn

(
nm+1/2

2 nm+1/2
3 −nm+1/2

1 nm+1/2
4

)(3.1)
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Making a Taylor expansion we have:

nm+1
1;j,k −n

m
1;j,k

∆t
=
∂n1

∂t
(tm+1,xj , yk) +O(∆t),

nm+1
1;j+1,k −n

m+1
1;j,k

∆x
=
∂n1

∂x
(tm+1,xj , yk) +O(∆x),

nm+1
1;j,k −n

m+1
1;j,k−1

∆y
=
∂n1

∂y
(tm+1,xj , yk) +O(∆y).

Then(
nm+1

1;j,k−n
m
1;j,k

∆t + cos(θ)
nm+1

1;j+1,k−n
m+1
1;j,k

∆x + 1
ε sin(θ)

nm+1
1;j,k−n

m+1
1;j,k−1

∆y

)
−
(
∂n1

∂t
(tm+1,xj , yk) + cos(θ)

∂n1

∂x
(tm+1,xj , yk) + 1

ε sin(θ)
∂n1

∂y
(tm+1,xj , yk)

)
= O(∆t +∆x+∆y).

The same argumentation hold for i = 2,3,4. We can thus conclude that the
scheme is accurate of order 1 in time and space.

3.2. Stability. We made the stability analysis by the Fourier analysis. We put:

nmi,j,k = ñmi (ξ,η)exp(q(ξj∆x+ ηk∆y)) ,(3.2)

ρmj,k = 2
4∑

i=1

nmi,j,k = ρ̃m(ξ,η)exp(q(ξj∆x+ ηk∆y)) ,(3.3)

with ρ̃m(ξ,η) = 2
(
ñm1 (ξ,η) + ñm2 (ξ,η) + ñm3 (ξ,η) + ñm4 (ξ,η)

)
, where (ξ,η) is an arbi-

trary wave vector and q is the complex number such that q2 = −1.
The boundedness of ñmi (ξ,η), i = 1,2,3,4 is equivalent to that of ρ̃m(ξ,η). Using

the conservation of mass in equations (2.9), we have ρ̃m+ 1
2 (ξ,η) = ρ̃m(ξ,η).

We have:

nmi,j−1,k = nmi,j,k exp(−qξ∆x) ,

nmi,j+1,k = nmi,j,k exp(qξ∆x) ,

nmi,j,k−1 = nmi,j,k exp(−qη∆y) ,

nmi,j,k+1 = nmi,j,k exp(qη∆y) .

(3.4)

We replace these relations in the equations (2.12) to obtain:
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Fi(ξ,η)nm+1
i,j,k = nm+1/2

i,j,k , i = 1,2,3,4.(3.5)

with

F1(ξ,η) = 1 +α cos(θ) +γ sin(θ)−α cos(θ)exp(−qξ∆x)−γ sin(θ)exp(−qη∆y)

F2(ξ,η) = 1 +α sin(θ) +γ cos(θ)−α sin(θ)exp(qξ∆x)−γ cos(θ)exp(−qη∆y)

F3(ξ,η) = 1 +α sin(θ) +γ cos(θ)−α sin(θ)exp(−qξ∆x)−γ cos(θ)exp(qη∆y) ,

F4(ξ,η) = 1 +α cos(θ) +γ sin(θ)−α cos(θ)exp(qξ∆x)−γ sin(θ)exp(qη∆y)

(3.6)

and α =
∆t

St∆x
et γ =

∆t
εSt∆y

. By taking the module, we can write:

|F1(ξ,η)|2 = [1 +α cos(θ)(1− cos(ξ∆x)) +γ sin(θ)(1− cos(η∆y))]2 + [α cos(θ)sin(ξ∆x) +γ sin(θ)sin(η∆y)]2

|F2(ξ,η)|2 = [1 +α cos(θ)(1− cos(ξ∆x)) +γ sin(θ)(1− cos(η∆y))]2 + [−α cos(θ)sin(ξ∆x) +γ sin(θ)sin(η∆y)]2

|F3(ξ,η)|2 = [1 +α cos(θ)(1− cos(ξ∆x)) +γ sin(θ)(1− cos(η∆y))]2 + [α cos(θ)sin(ξ∆x)−γ sin(θ)sin(η∆y)]2

|F4(ξ,η)|2 = [1 +α cos(θ)(1− cos(ξ∆x)) +γ sin(θ)(1− cos(η∆y))]2 + [−α cos(θ)sin(ξ∆x)−γ sin(θ)sin(η∆y)]2 .

(3.7)

As θ ∈ [0,π/2[, one has cos(θ) > 0 and sin(θ) > 0. Furthermore, for any X ∈ R,
1− cos(X) ⩾ 0. Then we have |Fi(ξ,η)| > 1, i = 1,2,3,4. Thus all the amplification

factors
1

Fi(ξ,η)
verify

∣∣∣∣∣ 1
Fi(ξ,η)

∣∣∣∣∣ < 1. Then:

ñi
m+1(ξ,η) ⩽ ñi

m+1/2(ξ,η), i = 1,2,3,4.(3.8)

Making the sum, we have:

ρ̃m+1(ξ,η) ⩽ ρ̃m+1/2(ξ,η)
⩽ ρ̃m(ξ,η), ∀m.

(3.9)

Finally

ρ̃m(ξ,η) ⩽ ρ̃0(ξ,η), ∀m.(3.10)

We can then conclude to the stability of the scheme and therefore it converge.

4. Discussion of the results

A point of interest in the study of gas flows in the scope of discrete kinetic the-
ory is the study of the influence of the geometry of the models on the behaviour



60 P.L. Defoou, K.A. Agosseme, and A.S. d’Almeida

of the macroscopic variables. The four velocity plane models of Broadwell Bθ

are one speed models whose sets of velocities depend on the angle θ. One speed
models have linearly independant summational invariants associated to the mean
density and the macroscopic velocity. This work therefore focuses on the anal-
ysis of the dependence of the mean density and the macroscopic velocity of the
flow upon θ. The numerical results shown here are those of computation made
for fixed values of the nondimensional parameters namely ε = 0.5, St = 0.1 and

Kn = 0.05 and for angle θ ∈
{
0,

π
8
,
π
4
,
3π
8

}
. We point out the fact that the models

Bθ are isotropic for θ = 0,π/4.
For all the chosen values of θ , after an unsteady phase where the macroscopic

variables depend clearly upon θ the flow reaches a steady state independent of
the latter. The macroscopic velocity decreases in the flow when time grows and
at the steady state the gas is at rest. Similarly the macroscopic density decreases
and reaches at the steady state the half of its initial value uniformly in the box.
The motion of the gas only results of the difference of density initially maintained
between the two parts of the box which is at rest. Moreover the process is ather-
mal so these results seem normal. Although it depends on θ, the unsteady phase
exhibit some general features.

4.1. General behaviour of the macroscopic velocity. When the fictitous
diaphragm separating the two compartments of the box is removed, the particles
of the discrete gas enter the initially empty part of the box. The flow direction
depend completely on θ and for θ = 0 and θ = π/4 it is symmetrical with respect
to the horizontal line of cordinate (see Table 1). At the onset, the particles move
from the full part to the empty part of the box. The first particles which hit the
walls of the initially empty part of the box are driven back in the flow but their
number is not high enough to influence the flow direction. The mean velocity of
the flow is very low in the initially full part and high in the initially empty part
of the box: the jump of the macroscopic density generates a flow whose velocity
increases with the distance to the separation zone. The mean speed of the flow
is maximum when the first particles hit the wall of the empty part of the box
parallel to the diaphragm. As soon as the time increases the particles returning
into the flow after the impact with the walls generate near the latters flows in
their opposite normal directions. These flowbacks first slow down the mean flow
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and little by little reverse its direction first in the initially empty part, then in
the whole box. The same phenomena occur in the initially full compartment of
the box and an inversion of the direction of the mean flow take place there and
after in the whole box. The time evolution of the fow is thus a succession of in-
versions of the flow direction until the mean velocity vanishes. The maximum of
the mean speed of the flow decreases with time and is no longer attained near the
walls where it tends towards zero. The mean velocity is non monotonic and its
extrema are attained anywhere in the box during the unsteady phase. It vanishes
in the box at the steady phase (figures 3,4,6,8,9,11,12).

4.2. General behaviour of themean density. Initially the mean density has con-
stant values in the two compartments of the box: the nondimensional values are
one in the full part and zero in the empty part. This profil becomes strictly de-
creasing at the beginning of the process due to the mass flow. As soon as time
increases the strictly decreasing profil of the mean density evolves towards a
constant profil after several inversions: partial inversions leading to non mono-
tonic profils and total inversions leading alternatively to increasing and decreas-
ing profils of the density in the box. The maximum of the macroscopic density
which can be attained anywhere in the box in the unsteady phase decreases from
the nondimensional value one at the beginning of the process to the constant
value 0.5 in the whole box at the steady state. These results are shown on figure
10 but the value of the Knudsen number induces a jump of the macroscopic den-
sity at the wall which reduces the values of the maxima at the beginning of the
process and at the steady state (figure 10).

4.3. Special effects due to the geometry of the model. We report here some ad-
ditionnal features of the flow resulting from the influence of the angle θ. The
study of the profils of the macroscopic velocity of the flow in the unsteady phase
shows a clear difference between the trajectories and the streamlines for zero
and nonzero θ. The trajectories and streamlines are always lines for θ = 0 while
they are curves with nonzero curvature for nonzero θ even in the symmetrical
case θ = π/4 (table 1, figures 3,4,6,8). This result suggests the presence of zones
of strong melting where dissipation and rotational effects occur in the flows de-
scribed by the model for nonzero θ. A convenient analysis of these effects can not
be done using the general four velocity Broadwell model which is athermal.
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Figure 6. Macroscopic velocity fields for θ = π/4
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Figure 8. Macroscopic velocity fields for θ = 3π/8
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Figure 12. Velocity v at the center
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5. Conclusion

We solve numerically, using the fractional step method, the problem of the
expansion of a gas in a box initially at rest and half-full filled. We analyze the
influence of the model orientation on the macroscopic velocity and density. We
show that the model orientation influences the flow in the unsteady state but
not in the steady state. The steady state is quantitatively and qualitatively the
same for all the chosen values of θ used for the study. Interesting features of the
flow are brought to the fore in the unsteady phase. Their dependence upon θ is
obvious. However their analysis deserves the use of multispeed models in order
to take into account energetic properties of the flow.
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