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ON THE EXISTENCE AND UNIQUENESS OF CLASSICAL SOLUTION FOR AN
INITIAL-BOUNDARY VALUE PROBLEM FOR A DISCRETE BOLTZMANN
SYSTEM IN TWO SPACE DIMENSIONS

Koudzo Togbévi Selom Sobah and Amah Séna d’Almeidat

ABSTRACT. The initial-boundary value problem for the two-dimensional regular
four-velocity discrete boltzmann system is analyzed in a rectangle. The existence
and uniqueness of classical global positive solution, bounded with its first partial
derivatives are proved for a range of bounded data by the use of fixed points tools.
A bound for the solution and its partial derivatives is provided.

1. INTRODUCTION

Discrete velocity models of gas are simplified models of the Boltzmann equation
obtained by assuming that the velocities of the gas particles belong to a finite set of
vectors. The nonlinear integro-partial derivative Boltzmann equation is replaced
by a system of semilinear hyperbolic equations associated to the number densities
of the particles having the given velocities. After the pionner works of Broadwell
[1,2] who introduced the first physically convenient models in the sense that
they can model actual gas flows and the theory for the general discrete velocity
model for binary collision given by Gatignol [3], the discrete kinetic theory of
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gas develops in two directions: the mathematical study of the kinetic equations
encompassing the existence and the uniqueness theory as well as the construction
of exact solutions and the modelling and the resolution of flow problems.

The existence theory for the discrete velocity models of the Boltzmann equa-
tion, not only supports the mathematical understanding of these models but also
underpins the reliability of numerical methods used in engineering and physics.
The good mathematical structure of the kinetic equations associated to these mod-
els lead to the rapid development of the mathematical theory of discrete velocity
models. Many results concerning the proof of the global existence and the unique-
ness of the solutions of the initial-boundary value problem have been obtained in
the one-dimensional case [[4,/5,10,(12,|13]]. Most of these studies concern the so-
called three velocity and four velocity Broadwell models which are the symmetri-
cal models obtained from the six and the eight velocity spatial models of Broadwell
by a symmetry with respect to any coordinate plane and axis respectively. Exact
solutions have been proposed for the three velocity Broadwell model [6].

The situation is quite different for multi-dimensional problems even in the steady
case. In [[19], using techniques based on the fractional steps method, the problem
of existence and uniqueness of the solution of the initial boundary value problem
is solved for the two velocity Carleman model. In the steady case, the boundary
value problem for the general two-dimensional four velocity Broadwell model is
investigated in [9,/15~18]] the existence of a solution is proved and exact solutions
are built. An extension to a fifteen velocity three speed discrete model is done
in [16].

In this work, the initial-boundary value problem for a two-dimensional four
velocity model of Broadwell is considered in a rectangle; we prove for a range of
bounded initial and boundary data, the existence and uniqueness of the classical
global positive solution which is bounded with its first partial derivatives and we
provide a bound for the solution and its partial derivatives.

The paper is organized as follows. In section |2| we briefly describe the model,
state the initial-boundary value problem and present the main result of the paper
which is proved in section[4] In section [3|we establish the positivity of the solution
of the initial-boundary value problem.
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2. STATEMENT OF THE PROBLEM

2.1. The discrete velocity model.

The general plane four velocity discrete models of Broadwell denoted by By,
0 e [0, %[ are among the simplest discrete velocity models and have been used to
study initial and boundary value problems in one dimension [2,8,17] and to build
exact solutions [9,(15]. In the basis (€3, €3) of orthonormal reference (O, €7, é5) of
the plane R? its velocities are u; = c(cosb, sinf), iz = c(—sind, cosd), uz = —uy,
uy = —uj, where § = angle(éi,u)) accounts of the orientation of the discrete
velocity model with respect to the reference.

Let N;(t,x,y) be the number density of the gas molecules with velocity «;, i =
1,2,3,,4 at the time ¢ and at the position M (z,y) the kinetic equations of the
model are:

(2N 4 ccos P + Csmeaa_j\;1 = Q

% — csme% + CCOSQ% = —Q

2.1 % + csin@% — 0005983—]\;‘ = —Q
% — 00059% — csin@%—];% = Q,

Q = 208 (NQNg — N1N4) .

=

€2

FIGURE 1. The model By

The total density p and the macroscopic velocity ﬁ(U, V') of a gas described by
the model are defined by:
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p| :N1+N2+N3+N4,
(22) ,OU = COS(Q)[Nl — N4] — SID(QMNQ — Ng],
pV = sin(0)[Ny — Ny + cos(0)[Ny — N3).

The Maxwellian densities of the model associated with the macroscopic variables
p, U and V are given by the relations:

(

Niy = & [1+4 cos(20) (u? — v*) + 2uv sin(20) + 2u cos(0) + 2v sin(0)]

2.3) Noar = 211 — cos(20) (u? — v?) — 2uv sin(20) + 2v cos(f) — 2usin(9)]
Naar = 21 — cos(26) (u® — v2) — 2uvsin(26) — 2v cos(8) + 2usin(6)

| Nanr = §[1 4 cos(20) (u? — v?) + 2uvsin(20) — 2u cos(6) — 2vsin(0)]

The mild problem in consideration in the sequel results from the modelling of a
gas flow in a rectangular box by the model B,.

2.2. Initial-boundary value problem.
Given Q = [a1,b] X [az,b5] CR%, I = [0;T] C R, we set £ = [0;T] x [ay; b1] x
[as; by] and consider the system Y.° defined by:

(2.4) 0N 1 N —()(N), (t,a,y) € P

o, o, - :
(2.5) W—'— 0y =—Q(N), (t,z,y) € &

ON; 0Ny :
(26) W_Ca_y__Q(N)a (t,.iE,y) € ‘@

ON;  ONy :
(28) Ni (O,ZU,y) :NZO (-T,y), (:U7y) S [alﬂbl] X [a2;b2] = 1, 74
(29) Nl (taalay) :Nf (tay)> (tay> € [OvT] X [a2;62]
(2.10) Ny (t,x,a9) =Ny (t,z), (t,x) € [0;T] x [a1; bi]
(2.11) Ns (t,2,b9) =N3 (t,x), (t,x) € [0;T] x [ar;b1]
(212) Ny (t,bl,y) :NZ_ (t,y), (t,y) S [O,T] X [Gg,bg]
(2.13) Ny (a1, y) =N7 (0.y), y € [az; by
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(2.14) N3 (x,a9) =Ny (0,2), x € [a1;bi]

(2.15) NY (2,b0) =N5 (0,2), = € [a1;bi]

(2.16) N{ (b1,y) =N{ (0.y), y € las; bo]

where

(2.17) Q (N) =2¢S (NaNy — NyNy), NOi=1,... .4,

are the initial data and N, , N, , N;", N, the boundary data. We assume in the
sequel that N? (i =1,2,3,4), N;, Ny, N;-, N, are non-negative and continuous,
that they have bounded and continuous first order partial derivatives. In the se-
quel, C' (X,Y) denotes the set of continuous functions from the set X into the set
Y. Our aim is to prove for the system X’ the existence of non-negative solutions
in C < P ;]R“) (thus bounded solutions) that have bounded first order partial
derivatives.

2.3. Main theorem.
Notation 2.1. For every function u : X — R whose domainis D, C X such thatu
is bounded on D, let us denote ||ul| ., = sup,¢p, |u ()| and for U = U), : X —

R%, such that every U; : D, <C X ) — R is bounded, |U|| = maxi<i<4 ||Uil| . -

Notation 2.2. For u : D, — R such that v = u («, 3) is bounded on D, and such

J

that g—“ 2u gre bounded on their domain, let us set

o’ 9B
ou
oo

ou
9p

lull, = max{nuuoo, '
o0

Let us consider the following parameters

2 1
p =4cS (1 +2. max{4T; - (by —ay); - (by — az)}) ;

q Emax{max{l; 2c} HN{)‘ (o) HN1_||1 ;max {1; 2c} HNg”l;
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max{2; (1 +c¢)} HN{‘

| smax {1;2c} | V9|

pimax {2; (14 o)} ||V

1
max {1; 2c} HNE”1 (24 0¢) HNIHI}

We prove in the sequel the following result.

Theorem 2.1. Suppose pg < ;. Then the system %° ([2.4)-(2.12) has an unique
non-negative solution

N = (N1, Ny, N3, Ny) € C ([0;T] x [ay, by] X [ag, bo] ; RY)

such that
14+1—4
(2.18) IN|| < —— Y- — P
2p
ON; ON; ON;

g 9a oy are defined in |0; T x Jay, bi[ X Jaz, b except possibly on a finite number
of planes including the four planes with respective equations
(2.19) —ct+x=ay;,—ct+y=asg;ct +1y=Dby;ct +x =by;

oN: N 88—];72' are continuous and bounded, for i = 1,2, 3,4, and satisfy

ON;||  |loN:
[e.e] 7 8x [e.e]

N,
dy
2) 1 1—14
gmax{l,_}+— V1= dpg
C

2p

ON;
e {1l | 5

1<i<4

o

(2.20)

3. NON-NEGATIVITY OF THE SOLUTION

Let’s consider the change of variables .% : (¢,z,y) —— (m1,72,73) such that
m=uz/c,n =1t/2—x/2c+y/2cand n3 =t/2 — x/2c — y/2c. We have % =
5z # 0 and the inverse of % is defined by .Z ! : (11,1, 13) — (¢, x,y) such that
t =m+mn+mns3, x=cn and y = cny — cn3. The transformed of the mixed problem

¥.0, through the change of variables, is the following problem X!:
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ON, - ——
(31) W = Q(N)7 (771a7127773) S (‘@) =
1
ON, - .
(32) 8_2 - _Q(N)J (771777277]3) € ‘@/
T2
ON; - .
(3.3) 8_3 = —Q(N), (m,n2,n3) € &'
3
ON, ON, ON, - .
3. — =Q(N P!
( 4) 87’]1 _l_ 8’]’]2 + 87’]3 Q( )7 (771’7727773> S
(3.5) Ny (=112 — 113,12, 113) = N (—ctpp — en, ez — cipg)
(3.6) N (1, = — 13,m3) = N3 (eny, —eny — 2c113)
(3.7) N3 (71, M2, —m1 — m2) = N3 (en, ey + 2cmp)
(3.8) N4( — N3, 7]2,773) NY (—cng — cnz, cng — en3)
~ (1 1
(3.9 N, (Eala 772#]3) =Ny (Eal + N2 + N3, CN2 — C773)
—~ a
(3.10) Ny <7717773 + —2,?73) = (?71 + 2n3 +2 cm)

(3.11) Ny (771,772,772 - =

(3.12) ( b17n27773>

3.1. Non-negative operator.

NS

Ny

(
(

m o+ 2m — — C771>

ol

by + 2 +n3,cn2 — cng)

ez

Proposition 3.1. Let o > 0. The problem is equivalent to:

(3.13) %—i-ap (f\?) Ny =op (Kf) N +Q (Nf) ,

a771
ON,
3.14
( ) o
(3.15) ON;
(9773

—~

—_—
(77177]27773) Efgz(c@) = c@/

—— +op (JV)JAV;zw (N>172—Q(N)7 (1,772, 13) € P

—— +op (ﬁ) Ns =ap (JV) Ns—Q (JV) (0, m2,m3) € P

79



80 K.T.S. Sobah and A.S. d’Almeida

(3.16) _?9];7\?+%]nv:+ZJE+UP<N>N4:U”<N>M+Q<N>’

(m,m2,m3) € P

with the conditions (3.5)-(3.12) and p (]V > = Zle ]AV;

Proof. The proof is obvious so that the equations (3.13))-(3.16) are obtained by
adding op <N ) N;, i =1,2,3,4 to the members of equations (3.1)-(3.4). O

In the sequel we denote ()7 (N) =op (N) Ni+Q (ZV) , i =1,4and Q7 (N) =

p(N’>’Nj—Q(N'>, i=23.

Proposition 3.2. Let 0 > 0. Let M = (]\71, Mo, M;, ]\Z) be a fixed 4-tuple of contin-
uous functions defined from 2’ to R. Let’s put )]\7) = (‘]\Z M 7’]/—\\4; ,‘]\ZD

Let’s consider the decoupled system <Z(17 1\7) of the following equations:

Nz(KfI,JTf;,ﬁg,N;), B.17)-(3.:20)

)
(3.17) laa—;?]\?+ap(ﬁ> (1\7) (71, 712, 715) eﬁ’(i@)zé’
(3.18) %—]EJM/)(M)JVQ:Q%(M) (11, 72,713) € P
(3.19) aa—];]\f’ +op ( M) ( JT/[/> , (M, ma,m3) € P
(3.20) - 88]7;714 + g]j; + 88]7;[4 +op (‘MD Ny = Qf (‘MD (1, m2,m3) € P

with the conditions (3.5)-(3.12)). Then for sufficiently large o, the problem (E(lr M)
has an unique continuous and non-negative solution.

Proof. The problem (3.17)-(3.20) is a linear problem associated with (3.13))-(3.16).
Using the conditions (3.5)-(3.12), it’s unique solution is:
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ﬁl (7717 M2, 773)

m s 7 — ATO
— (/ P - p(|M|)(T’n2’"3)dTQT (‘MD (5,m2,m3) ds + N7 (772,773))

—"N2—"3

__m M :
% e Uf7n27n3 p<|M|)(8,7727775)ds . ]I—ch—C’VBZal (771, M2, 773)

(3.21)
m o f3 ]’\\4’ rme, dr pu — —
n <[ o7 Ve, p([M]) (ranzma) Q7 (‘MD (8,12, m3) ds + Ny <772’773)>
<o
70’[”1 pP M (377127773)(13
X e %al (| |) . ]Ich]Q*C’IBSGI (77177727773)
Na (171,772, 13)
72 s v d — 70
= ([ e (7)) )+ ¥ o))
—M1—"n3
—_o [ M s
(322) X e ffnlfng p<|M‘)(7717 ) . H—cn1—267732l12 (7]17 N2, T]3>
Uy p s @ M T dr o — S
. </ o7 Dy sz p(|F]) o) o (‘MD (m,s,m3) ds + N, (771,773)>
773—&-%2
_o-f"2 ao P M (n1,s,m3)ds
X e n3+-2 (| |) ' ’ . chn172cn3§a2 (77177727773)
JAV; (11, M2, M3)
n3 s ]T] d — aNTO
_ (/ ea‘f—m—ng P(| |)(7]1:772,7') TQg (’M’) (7]1’7’]278) dS + Ng (771,772))
mn—n2
(3.23)

o [T M
X e Uffmfnz p(|M|)(n1,n2,S)dS . ]Icn1+26772§b2 (7717 2, 773)

3 o [* 9 M ( , ,r)dr —~ J—
+ (/ b2€ fn2—b7p<| D 1,72 Qg (‘M‘) (771,7]2,8) dS—i—Ngr (771,172))

n2—-—=

(&

3
—a/ p(|MD(mm275)d5
b2

xe Ym—Z Loy 1 2ems>by (111,12, M3)
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Ny (771, N2,M3) = D —— (771, 2, 773)

ni+n2+n3 s —
. / <e‘7 o P(|M|)(—r+2n1+n2+n3;r—m—na;r—nl—nz)dr>
0

X QF (‘MD(—8+2771+772+773;3—7h—773;3—771—772)d8

+ NA(L) (11, 7727773” G_UIOUHWF% (| M|) (=s+2m+na+nsss—m —ng;s—m —n2)ds

(3.24) + H20W1+Cn2+67732b1 (7717 12, 773)
— 1y .
. /( mh) <€UfosP(’M|)(—T+%b1;r+n1+n2—%bl;r+n1+n3—%b1)dr>
0
L~ 1 1 1
XQ4(‘M‘> —S+Ebl,8+7]1+7]2—Eb1,8+771+773—gb1 ds
Nt *Uf(7n1+%bl) P(|M|)(*3+lbl'S+771+772*lb1'8+771+773*lbl)dS
+ Ny (771ﬂ72>773)]6 0 e e e
where
NY (112, 13) = NY (—em — ens, e — 1)
(3.25) — /1
and Ny (112, 73) = Ni_ { —a1 + 12 + 13, cnz — cns
(326) @(7717_3> = Ng Ch, =€ — 207]3)
and Ny (n1,m3) = Ny (n1 + 203 4+ %2, cny)
(3.27) N3 (1, 7m2) = N3 (eny, em + 2cmp) b
and Ny (1,72) = N3 (1 + 22 — 2, emy)
(3.28) Ff(m,_na, 13) = Ni (2em1 + ez + en, cna —10773)
and N, (m,7m2,m3) = N, (2771 + 2 +1m3— b1, ene — 0773) .

Let us show that if ¢ is sufficiently large, for all M , the solution N = (val, ]VQ,
N3, N,) of (E}T ;) where Ny, Ny, N3, Ny are defined by (3.21)-(3.24), is non-negative.
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As the data Ny, NY, N9, N, , NY. NJ-, N, N are non-negative, it is sufficient
that Q7 <‘MD >0, i=1,2,3,4. One has:

'QT(M)ZU(AZ+A%+%)M+2CSAZ M;

‘|‘(O'—ZCS) M1 M4

Q3 (|M]) = o (|3| + | M| + | ML) |AB| + 28 |2 | [ M,

+ (0 — 2¢S) | M| | M;

(3.29) 07 ()MD:0<‘M’+‘]\%‘+‘J\Z(> )J\%M%S‘J\ZHAZ‘.

o)
(i) o 1
+(a—205)(z\71

i

+‘%‘+‘J\Z

)i s

M,

\

From which we conclude that for o > 2¢S, the solution N = (val, N;, ]73, M) of

(2,1; 1\7) is non-negative. O
We can thus consider the non-negative operator
7o 9 R) — o 7R
(3.30) M — N,

where NM is the unique non-negative solution of the problem (E}T 1\7) for suffi-
ciently large o.

3.2. Non-negativity theorem.

Theorem 3.1. The solutions of the problem X! (eq.3.1 are non-negative.

Proof. Let us verify that N = (]A\fl, ]AV;, ]A\f;, ]AV;> is a solution of X! if N is a fixed
point of the operator 77 (3.30) for sufficiently large o.
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We have M = (Ml, Mo, Mg,M4> eC ( Kz ;R"‘) is a fixed point of 77 if ]VM =

M, i.e., M is a solution of (E}; M), ie.,

30 Doy (7)) 1 = &5 (7)) nomm) € F P = 7,
s D (|51 - o5 ([FH]) . i € 5
@33 o (|M]) 3= 65 (|M]) . (o) €
ol G Sl () 43 () o <

with the conditions (3.5)-(3.12); as NM — M is positive i.e. ‘M ‘ — M for suffi-

ciently large o, (3.31)-(3.34) means M is a solution of (X1) which is equivalent to
Y1, As T7 is non-negative, so are its fixed points. O

4. EXISTENCE AND UNIQUENESS OF BOUNDED SOLUTION

We shall define an operator, the fixed points of which, are the solutions of the

problem X! (3.143.12)) and establish the existence of the fixed points by using the
following Schauder’s theorem ( [[14]], p.25, Theorem 4.1.1).

Theorem 4.1. ( Schauder [14]) Let M be a non-empty convex subset of a normed
space A. Let T be a continuous compact mapping from M into .#. Then T has a

fixed point.

4.1. Fixed point problem.

Let M = <M1, My, M, M4) be a fixed 4-tuple of continuous functions from &’

into R. Let us consider, the following decoupled system (21\7) defined by (4.1)-
(4.4).

ON, — —— .
(4.1) £ =Q(M), (m,n2,m3) € F(P) =,
1
ON, . .
(42) _2 - _Q(M)7 (77177]27773) € @,7

8772
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ON; — .
(43 St = —QUI), (o) € P
3
ON, ON, ON, _ — :
4.4 - + + =Q(M), (m,n2,m3) € &,
(4.4) o " om T o, Q(M), (m,m2,73)
with the conditions (3.5)-(3.12)). Then it follows from the resolution made in

the proof of proposition (3.2)) that the problem (Z%) has an unique continuous
solution N = <N:,N;,N;,E> defined by:

Nl (771777277]3>

m -
(45) = </ Q <M> <S7 M2, 773) ds + Nlo (7727 773)) ' ]I—CTIZ—CWBZG& (771’ 72, T]3)

—N2=13

m e N
+ </ Q (M> (57 N2, 7)3) ds + Nf (7727 773)) ' H—CWZ—CTISSCH (7717 N2, 773)

1
a1

771 72, 7)3

(46) ( _Q M) (771787773) ds +@(77177I3)> : ]1—8771—267732(12 (771777277]3)
7771 73

( M) (m,5,73) ds + Ny (11, m)) ey —2ems<az (11512, 13)
773+

N3 (7)17772,773)

3 P R
@n = (7 Q) s+ N ) ) T ()

—Mm—n2

3 s _
+ (/ by Q (M) (m1,1m2,8) ds + N; (771,772)> Loy +2em>bs (11,72, 7)3)
m—-=

Ny (7717 12, 773) = H26n1+cn2+cn3§b1 (7717 12, 773)
m-+n2+n3 .
(4.8) {/ Q(M>(—s+2171+n2+n3;s—771—ns;s—nl—nz)ds
0

+ W(nh 2, 773)] + H2cn1+cn2+cn32b1 (771, 12, 773)
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(‘771+%b1) . 1 1 1
. / Q(M) —S+Eb1,8+771+772—Ebl,S+771+773—Eb1 ds
0

+ N_I(mﬂ?z»n?))] :

We can thus define the following operator

T:c( 2 R —C( 2R
(4.9) 3 7 (31) = (7 (31))
where T (]\7 ) = (7} (]\7 ))j_l is the unique solution of the problem (E}W) .

It immediately follows from (4.1)-(4.4) and (3.1))-(3.12) that the solutions of
¥:! are the fixed points of 7.

4.2. Continuity of the operator of the fixed point problem.
Proposition 4.1. The operator T ( is continuous.

Proof Relation (&.5) gives for M, N € C (%', R%) :

|7 (37) -7 (%))

(4.10) = max{(mmf}:zge@ /_:12_,73 [Q (M) - @ (Nﬂ (5’772’7]3> ds|;

/’“ [Q (M) -¢ (Nﬂ (5,12, 73) ds

1
Cal

sup
(m,m2,m3)€P’

But yields
Q (M) = Q(N) =205 (M — Ny) My + 2SN, ( My — Ny

(4.11) ~ 25 (M~ N,) M, — 265, (M, — ).

hence
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o (1) e (7]

<205 — N, HJ\ZH 1205 |,

| =]

+2¢S J\Z—NE ]\7[:1 Ni

+ 2¢S

M_NZLH )

T o) -a(®)] s
0 (3) -0 (5)]_ =5 (1] 51 -]
hence implies

7 () =T (9]

wam s (s enew) s ([« ) 7

n,m2,m3)EP!

(s (o=t (] ) -]

1 1
Now O <+ +n3 <Tand a; < ey < by;hence 0 <y — —a1 < — (b —a1);
c

s (37) -7 (W),

@19 o 00 ) s ([37] o 5]) - 5]

M- NH HJTJH 4 4cS

77 -]

from which

Similarly from we have

|7 (37) -7 (V)]

(4.19) = max{(mmj}rlzge,@’ /77277 [Q (M> -Q (Nﬂ (s,m2,13) ds|;
(mmj}vlzsp)egﬂ/ /77:‘? [Q (M) -Q (Nﬂ (5,72,m3) ds }
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and

7 (W) -7 (V)]

wasy =msf (o oneosnn ) aes (|57] < ] 579

n1,m2,M3) €L’

(o (== 2)) s (] ] -] |

1,12 7773)6‘@/

o0

But 0 < m +m +n3 < T and ay < ¢ — en3 < by; hence
Ogng—ng—%gi(bg—ag);thus

7 (3) -7 (5)

HOO

1

16 <L s ([ 4 ) o7 - 5]

Similarly and yield
|7 () == (V)]
1 <o 1.1 s ([31] |9 o7~ 5],
and
|7 () =7 (V)]
@19 <o 7.1 - pas ([31] | o7 5],

Now from (4.13)-(4.16)- (4.17)-(4.18) and

|7 (1) -7 (¥)]
|7 (1) -7 (9]

190 {710 ). L= s ([31] 9] o7 5.

7 (1) T (V)]

= Imax
1<i<4

we have

-

=p’
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For a fixed N and a fixed R > 0,
thus forall € > 0,

V-8 <r = |[§7] + |5 < 2|5 + #

OHED

We deduce that 7 is continuous. O

-] < — () -7 ()] <=

4.3. Convex set on which the operator is compact.

Proposition 4.2. Suppose M = (]\Z,J\%,]\%,]\Z) € C( P’ ;R4) such that
OM; OM; OM;
om ’ On2 ? On3

continuous and bounded for all i = 1,2, 3, 4. Then all the derivatives aggy) (7 =1,2,3),

(1 =1,2,3,4) are defined in ' except possibly on a finite number of planes, and are

are defined in P except possibly on a finite number of planes, and are

continuous and bounded.

Proof. It follows immediately from the formula (4.5)-(4.8) as the derivatives of
both the integrand and data are defined, continuous and bounded. O
Let F the sub-space of C ( s R) consisting of functions u that are continuous

on &’ such that %, j = 1,2, 3 are defined in P except possibly on a finite number
of planes, and are continuous and bounded. The above proposition states that
VM € E* C C (2, RY), T (M) e E*

Proposition 4.3. Let us set for all R > 0,

Mp = {N€E4:JV(N) EmaX{HN‘ : g_ﬁ )
(*:20) aN| [|on '
%5’5@}§R}

Then, .#r is a non-empty convex subset of C' (2?';RY).

Proof. ./ is non-empty for it contains the zero function. For M,N € .y,
and A € R such that 0 < X\ < 1 we have AM + (1—A\)N € E*. Moreover
N </\]\7 +(1=X) N ) < R follows from triangular inequality. O

Proposition 4.4. The operator T is compact on .#r forall R > 0.



90 K.T.S. Sobah and A.S. d’Almeida

Proof. First, we prove that 7 (.#y) is bounded in C (£';R*) . From

(4.21) 0 (JTI) — 268 (M;M}, . J\Z]\Z)
we infer
w2 ()] = s (- )| < (o ()

So, ([@.5)-(@.8) yields for all M € .#x :

7 (1) < s 1L - | (o (37

oz o] 3}
7 (1) < s om0 o (o (7))

),q{5], |

[ ()] = o5 ms{ 1 = (o (7))

y
fr ()] s4cs-max{ﬂé<m—ao}<w<fw’>>2

(4.26) + max{ HN4

(4.24) + rnax{

. +
7N3

(4.25) + max{ HFQ

Then for all M € .4 R:

HT( )H<4cS max{ ;%(61—a1);%(b2_a2)}R2

o [ f =
1 1 1 1 1

1<i<4
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Second, we prove that T (.#3) is equicontinuous in C (£'; R?) . From

we infer
[ o s @) < (o )

On one hand we have
oT; (1\7)

o < 4¢8 <</V (1\7))2 i=123.

(4.30)

[e.e]

On other hand, by derivation in the equations (4.5))-(4.8), taking the norm and
taking into account (4.29), we have

371@5?) S4cs(1+2-max{T;%(b1—aﬁ}) (,/V <]T4/>>2

a0 s 5], |
oT: (M) | —\\2
B §4cs(1+2-max{T;E(b1—al)}> (w (M))

(4.32) + max{ Flo‘ ¥ N_l_Hl}’
oT; (M) | —\\2
o §4cs(1—|—2-max{T;E(bQ—ag)}> (JV (M>>

(4.33) —i—max{ N? ¥ N, 1};
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(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

K.T.S. Sobah and A.S. d’Almeida

< 465(1 +2'maX{T;%<b2 — az)}) (JV <j\\4/>)2

< 4ecs (1 +2- maX{T; % (b2 — “2)}> ('/V (]\7))2

< des <1+2 max{4T§E(b1_a1)}) (# (1))
11,

<o (12t 0o ) (o (7))
Oj ], |
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oT: (M)

(9—773 < cs (1+2-maX{2T§%(b1_a1)}) ('/V (]T/[/))Q

e i R

Equations (4.30), (4.31)-(4.39) and (4.20) imply that %, (1=1,2,3),

(i =1,2,3,4) are uniformly bounded on their domain when M varies within ., R
As the o7:(M) are continuous, VM € Mz, fori=1,2,3,4,7; (Z\N/[> eC < iz ;R)

i
n;

N—

o7 (1)

is differentiable on the domain of ( o

) I T (]\7 ) is differentiable at

(m,m2,m3) , letd <7; (M>> (M1, M2, n3) denote the differential of 7; (]T/f/> at (n1,m2,13) -

d <7§ (]\7 )) (m,m2,m3) € Z (R3 R), space of linear continuous functional on R3.
As As %, (j = 1,2,3) are uniformly bounded, we easily deduce that there ex-
ists a constant b independent of M such that

(4.40) o (7 (31)) momema)|, <

The domain & is convex, being a parallelepiped. For (ni,m2,m3), (m, 75, 75) €

P'ifforalli = 1,2,3,4 87;9_4)
J
{(m,m2,m3) +(ny — 1, nh —m2,m5 —n3) | (0 < o < 1)}, then by the mean value in-

equality for alli = 1,2, 3,4,

are defined on the segment [(11, 72, 113) , (0], 75, 15)] =

T: (M) (m,m2,m3) — T (1\7> (1,5, 1)
(4.41) <O (1, m2.m3) — (s 13 1) || s -

Then for all € > 0, with

(4.42) Ne = min —,
we have

(71, m2,m3) — (115 13 13) || s < 7=

(4.43) — HT<J\7) (nl,ng,na)—7<1\7) (mmesms)|| <€

R4
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The 87;;&7?4) may not be defined only at points of a plane, hence the later points

are adherent to the domain of (M) . Therefore by continuity of T (]T/f ) on

On;
P can be extended to &7': !
Ve > 0,3n. > 0,YM € Mp,¥ (n1,m2,713) , (0, 0y 113) € P
1(n1, 712, m3) = (s i, 5] < e
— HT (1\7> (n1,72,m3) =T (1\7) (1,712, 773)

Therefore T (.#3) is equicontinuous in C' (2?';R*) and by Arzela-Ascoli theorem,
T (%) is relatively compact in C' (2?’;R?) i.e. T is compact on .#/p. O

<e.
R4

4.4. Stable convex set under the operator.

Proposition 4.5. For all M € M, we have T <M ) € E* and

(4.44) N <T (M)) < 4eS (1 42 max{4T; % (b — a1); % (by — cm)}) R?

[Ny

Np|| || NS5[ V2
1

]

|2

v

3 3 3 3 3
1 1 1 1 1 1

—|—maX{HF10‘

}

Proof We have M € .#p C E* = T(M) € E*. (proposition (4.2))). Using
(@.30), (4.33), (4.35) and (4.37) we obtain

oT (M) ) .
———2 | <4eS | 1+ 2 -maxq 47— (by —a1); — (ba — ag)
om c c

@was) (o (Jv))ﬂmax{umo\ N—;\L}.
Similarly we have

87'(M> < 4cS <1+2-max{2T;%(b1 —aﬁ;%(%—m)}) (</V <M>>2

8772
}

]

i

il

¥,

1 1 1 1

Ny

?

o

~

oo [0 I

B

; ; ; ;
1 1 1 1 1
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@ < 4cS <1 +2- maX{2T; % (b1 —a1); % (b2 — a2)}) <’/V <M>)2

won o, )
By taking N = T (M) and using @.27), (@45), (@46) and (@47), we obtain
for M & .4, @43). 0
Let us set
(4.48) p = 4cS <1+2~max{4T;%(b1 —al);%@z —a2>}>
and
q”EmaX{HW I AP P O

(4.49) H@Hl NY|[ IV

x| .
Ny ”1’

Y

1

}

Equations (3.25) yield

ONY 9 o 9
—L =—¢c—N —N
87’]2 (772a773) Cax 1 ($ay)+cay 1 (l’,y),
(450) (.Z', y) = (_0772 — (N3, Ch2 — 0773)
ONY 9 o 9 o
—L =—c—N —c—N
8773 (7727773) Caﬂf 1 (x,y) Cay 1 (l‘,y) 5
(z,y) = (—cna — cng, cna — cn3)
ON; 0 o .
——L = —N (¢ — N (¢
6772 (7727773) 8t 1 ( 7y)+cay 1 ( 79),
1
(4.51) (t,y) = (Eal + 12 + 13, €2 — 6773>

(4.52)



96 K.T.S. Sobah and A.S. d’Almeida

o a
6—3(7]27773) = a]\ﬁ (t,y) _Cﬁ_le (t,y),

1
(t,y) = (Eal + M2 + 13, N2 — 0713)

— OND OND

HN?HOOSHNle; 3—7721 Oo<2 1NVl OOSQCHN?Hl

— T T _

Sl < vl | G | < v alvils |G| < el
(4.53) ’F{) < max{1;2e} [ N9, | AT]| < () AT

Similarly, (3.26)), (3.27), (3.28) yield inequalities which with (4.53)) yield
(4.54) ¢" <q,

where

max {1; 2¢} | Ng

E

q Emax{max{l;Qc} NPl L+ o) || N |5

(4.55) max{2;(1+c¢)} HN;”1 ;max {1; 2c} HN:;)”1 ;max {2; (14 ¢)} HN;

K

max {1; 2c} H]\C?H1 (24 ¢) HNZHI};

Now, (4.44) yields

(4.56) N (T (1\7)) < pR?+q.
Proposition 4.6. Suppose

(4.57) P < g

and

(4.58) Sl ARSE V21p‘4m <p<itVi—tm V;p“‘pq |

Then T (M) C Mx.
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Proof. For M € M, we have (4.56). Thus to have T (Mv) € ///R,VM € Mp,it is
enough that R > 0 satisfies the inequality pR? + ¢ < Ri.e. pR* — R+ ¢ < 0.
Now R > 0 satisfies the preceding inequality if we have:

4.59 1—4pg >0
(4.59) 1-VI-4pg R < 14++/T1—4pq
2p — — 2p :

4.5. Existence theorem.

Proposition 4.7. Suppose pg < 1. Then the system X! has a non-negative
solution N = <NI,N;,N3,E) € C< P ;R4) such that the partial derivatives

ON; ON; ON;
Om1? On2? Ong
continuous and bounded for i = 1,2, 3, 4, and such that

are defined in &', except possibly on a finite number of planes, are

ON;
3773

ON;
a772

N,
6)771

1<i<i oo’ ) ) .

(4.60) max { HN/Z

}< 1+ +/1—4pq

2p

[e.9] o0

4

Proof. For any .#r = {M = (MZ> - cE*: N (]T]) < R} ,(R>0), such that

(1—+T—=4pq) /2p < R < (14 /T—14pq) /2p, A is a non-empty convex subset
of C'(#';R*). From propositions (4.1} [4.4/ and [4.6 7 is continuous and compact
on ./, and T (Mr) C Mr. Thus according to Schauder’s theorem T has a
fixed point N € #x.

We thus have .4/ (]V) < R < (1++/T—4pg) /2p. From subsection 4.1, N =

(]71, ]72, ]73, ]74;13’ a solution of problem X*. N = <]71, ]72, ]73, E) is non-negative

from theorem On the other hand, N € .#;, => N € E* hence N €

Y ON; ON; ON; . L2 . ..
C ( 7Z ) and Tur ones oy are defined in &?’, except possibly on a finite num-

ber of planes, are continuous and bounded i = 1, 2, 3, 4. O

For uw € C ([0;T] % [a1,b1] X [as, bs] ; R) let us put

(4.61) ul| . = sup u(t, z,y)],

(t,x,y)€[0;T] x [a1,b1] X [az,ba]
and for N = (N;)._, € C([0;T] x [a1,b1] X [ag, ba] ; RY)
(4.62) [Nl = max [|N;]| . -

1<i<4
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For w : [0; T| x [aq, b1] X [ag, by] — R with domain D, C [0;T] X [a1, b1] X [as, bo]
such that u is bounded on D,,, let us put

(4.63) |ull,o = sup |u(t,z,y)|,

(t,x,y)EDy
and for N = (N;)._, € C (Dy;RY),

(4.64) INV]] = max [[Nil .

1<i<4

4.6. Proof of the main theorem

Proof. From proposition 4.7, and the change of variables .#, we deduce that
the problem X° has a solution N = (Ni)?zl = N (t,z,y) such that N (t,z,y) =
N (n1,12,m3) where N is a solution of X!.

We have
M= sw [N = swp [Ny = 1N
o0 (77177727773)60 ! (t,x,y)eﬁz
hence (4.60) yields
1++v1—-4
(4.65) IN|| = max {||N]| .} < ——"1
1<i<4 2p

One has from the inverse of the change of variables,

~ /(1 1 1 I 1 1 1
N(t7x7y>:N(_x;_t__x+_y;_t__x__ )7
C C

2 2c 2 2 2c 2c
hence
ON; _ 19N; | 19N;.
Bt T 20 +§87]37
ON; _ 18N, _ 10N; _ 1 0N;.
(4.66) o T com T 2om T 2 o)
ON; _ 10N; _ 10N;
dy ~ 2c O 2c Ons *
We deduce that
ON, 1||oN; 1||oN;
875 o - 2 (97]2 2 (97]3
ON; 1+1—-4
(4.67) < e e
ot || 2p
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oN;|| _1 ON; ON; ON;
or ||, ~ c||Om ony ons
(4.68) 'W < 214 V1 dpg
o c 2p
‘8N 1|[on; | 1 |[on
0 (97]2 - 87]3 ~
11+ 1= 4pg
(4.69) ‘ SE#'

Thus we can deduce (2.20)).

Also, gjnvl , ?9]:2 : ‘gjnvgl are defined except possibly on a finite number of planes in-

cluding the four planes with respective equations

(4.70) —cny —cng = a1, —cn1 — 2cng = ag, ey + 2cny = ba, 2emy + ey + enz = by

We deduce that %, G5, 5% are defined except possibly on a finite number of
planes including the transformed of the planes with equations (4.70) by the in-
verse .# ~! ; direct calculations using .# ~! give the equations (2.19).

Suppose that the problem X° have two solutions M and N satisfying

M| = max [IM;]], < =25
4.71) -
INY = o [ Vil < =/

M, N defined on &' by M (111, 12,1) = M (t,,y) and N (i 1,15) = N (¢,,9)
are solutions of problem X!,
Wehave’ A =[Nl and ‘ i

= ||M7'||oo R hence HNH = Maxi<i<4 ‘
maxicict | Nill,, = V] and || 27 = 1az]].

Equations yields HMH < (1+vT—=14pq) /2p,
Hence yields

|7 (37) -7 ()]
(4.72) < % (14 /T 1) HJTJ— NH

N| < (1 vT=pg) /2.

IN

14+ VT —4pq |~ =
T
p



100 K.T.S. Sobah and A.S. d’Almeida

But M and N are fixed points of 7, hence (4.72)) is written

—~ ~ / —~ o~
(4.73) HM—NH <. (1+ 1—4pq) HM—N ,
p
i.e.,
y ~
(4.74) (1—5-(1+«/1—4pq)> HM—NH <0.

From (4.19) and (4.48)) we have

1 1
max<{ T, — (by — ay), — (by — a9)
P c c my

4.75 £ - :
142 -max 4T,E(b1—a1),g(b2—a2)

. ;li’ . mi _ 1 .mi. :
my < Mma; B = o = T me and successively
1 1
< =
1 2
mi 1

1
P L2 omy 2
On the other hand 1 + /1 — 4pg < 2, hence % . (1 ++/1— 4pq) <1,i.e.,

(4.76) 1—3,-(1+\/1—74m>>0.

p
From (4.74) and (4.76) we deduce that
(4.77) |77 - &|. <0
Therefore M = N and M = N. Hence the uniqueness. O

5. CONCLUSION

We show that under some condition on the data, the initial-boundary value
problem in a rectangle for the two dimension Broadwell’s 4-velocity model has a
continuous unique non-negative solution bounded with its first partial derivatives.
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We provide a bound for the solution and the derivatives. Our perspectives are now

to study the case where the data are general.
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