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ON A CHARACTERIZATION OF FREE PRODUCTS OF GROUPS WITH
COMMUTING SUBGROUPS BY THE TREES

Saliou Douboula1, Gilbert Mantika, and Daniel Tieudjo

ABSTRACT. In this paper, we prove that when a group G acts on a tree Γ such that
the quotient graph G/Γ is path 2 and when in G, any element of the stabilizer
of one of the segments of this path commutes with those of the stabilizer of the
other segment, G may be identified with the free product of groups with com-
muting subgroups and every free product of groups with commuting subgroups
is obtained uniquely in this way. Also, we give here some illustrative trees of this
characterization.

1. INTRODUCTION AND RESULTS

Various links between group theory and trees was studied by several authors.
R. Möller and J. Vonk in [15] proved that if G is closed subgroup of the automor-
phism group of a tree Γ and G leaves no non-trivial subtree invariant and fixes no
end of Γ, then the subgroup generated by the pointwise stabilizers of half − trees

is topologically simple. In their book Groups acting on graphs [2], W. Dicks and
M.J. Dunwoody developed powerful techniques for forcing a group to act on a
tree. One of their results is a method of building a tree from a graph such that
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the automorphisms group of of this graph acts naturally on the tree. In the same
way, R.G. Möller in [14] pointed out how one can, by using this method, reduce
questions about ends of graphs to questions about trees. He studied the automor-
phisms group of regular trees and the action of the automorphisms group of a
locally finite graph on the ends of the graph and finally classified the subgroups
that have index less than 2N0.

Now, connections between free constructions of groups and graphs have been a
subject of many investigations. J.P. Macmanus in [12] proved that a connected,
locally finite, quasi-transitive graph is necessarily accessible. This leads to a com-
plete classification of the finitely generated groups which are quasi-isometric to
planar graphs. In particular, such a group is virtually a free product of free surface
groups, and then virtually admits a planar Cayley graph. About characterization
of free constructions of groups by the trees, Y. Tumartin in [16] proved that only
free groups act freely on trees. He established that an action of a group G on a
tree Γ defines a decomposition of G called a graph of groups, (G,Γ). Conversely,
from a graph of groups (G,Γ), can be defined a group π (called the fundamental
group) and a tree Γ′ on which π acts. His main result is the statement that these
two constructions are inverse to each other, i.e. that a decomposition into a graph
of groups uniquely corresponds to an action on a tree. Also in relation to the char-
acterization of free constructions of groups by the trees, let G be a group acting
on a tree Γ. According to J.P. Serre in [11], when we know the quotient graph
G/Γ as well as the stabilizers Gx (x ∈ V (Γ)) and Gy (y ∈ E(Γ)) of the vertices and
edges, we can distinguish two special cases.

The first case occurs when any Gx and Gy reduces to {1} (in which way we said
that G acts freely), the group G is then free, see [11, Theorem 4]. This case gives a
simple proof of Schreier’s theorem, according to which a subgroup of a free group
is free. Conversely, every free group acts freely on a tree. See [11, Proposition
15].

The second and last case arises when the quotient graph G/Γ is a segment

T = •
P Qy

• . For this case G may be identified with the free product with
amalgamation GP ∗

Gy

GQ, see [11, Theorem 6], and every free product of two

groups with amalgamation acts on a tree with segment as fundamental domain.
See [11, Theorem 7].
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In [6], Loginova pointed out a link between free products of groups with amalga-
mation and free products of groups with commuting subgroups. She established
that every free product of groups with commuting subgroups can be written as an
amalgamated free product of two amalgamated free products of groups, what we
call a double amalgamation of groups.
In this paper we use this link and the characterization of free products of groups
with amalgamated subgroups by trees to obtain a characterization of free products
of groups with commuting subgroups by trees. That is:

Theorem 1.1. Let G be a group acting on a graph Γ′ and let

T ′ = •
P ′ Ry1

•
Q′y2
•

a path 2 be a fundamental domain of Γ′ mod G.
Let GP ′, GR, GQ′, Gy1 = Gy1 and Gy2 = Gy2 be the stabilizers of the vertices and

edges of T ′. If every element of Gy1 commutes with those of Gy2, then the following
properties are equivalent:

(1) Γ′ is a tree;
(2) there exists a tree Γ (and only one, up to isomorphism) on which G acts with

fundamental domain a segment;
(3) the homomorphism GP ′ ∗

[Gy1 ,Gy2 ]
GQ′ −→ G induced by the inclusions

GP ′ −→ G and GQ′ −→ G is an isomorphism.

Conversely, we prove that every free product of two groups with commuting
subgroups acts on a tree with path 2 as fundamental domain. It is:

Theorem 1.2. Let G = G1 ∗
[H,K]

G2 be the free product of the groups G1 and G2 with

commuting subgroups H and K. Then, there exists a tree Γ′ (and only one, up to
isomorphism) on which G acts with fundamental domain a path 2

T ′ = •
P ′ Ry1

•
Q′y2
• ,

the vertices and edges of this path have GP ′ = G1; GQ′ = G2; GR = H×K; Gy1 = H

and Gy2 = K as their respective stabilizers.

The illustrative trees given in this paper can help to derive the following.
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Corollary 1.1. Let G = G1 ∗
[H,K]

G2 be the free product of the groups G1 and G2 with

commuting subgroups H and K. Let Γ′ be a tree on which acts G with T ′, a path 2

as a fundamental domain. Then we have:

(1) every segment in Γ′ is a result of the action of an element of G on a segment
of T ′. More precisely, for a given segment in Γ′, there exists another segment
in Γ′ connected to the first one such that the resultant path 2 is obtained from
the action of an element of G on T ′ and,

(2) every path 2 of Γ′ is not necessarily a result of the action of an element of G
on T ′.

2. PRELIMINARIES NOTIONS AND RESULTS

In this section, we collect some imformations and properties on some free con-
structions and groups acting on graphs which will be usefull in this paper. See
[4,7–9,13] for free constructions and [1,3, 10,11,16] for groups acting on trees,
for more details.

2.1. Some Free Constructions of Groups.

Definition 2.1 (Free product of groups with amalgamation). Let G1, G2 and H be
abstract groups and let fi : H −→ Gi (i = 1, 2) be monomorphisms of groups. A free
product of G1 and G2 with amalgamated subgroup H is defined to be a pushout

H
f2 //

f1

��

G2

φ2

��
G1

φ1 // G

in the category of groups, i.e. a group G together with homomorphisms φi : Gi −→ G

(i = 1, 2), satisfying the following universal property: for any pair of homomorphisms
ψ1 : G1 −→ G′ and ψ2 : G2 −→ G′ into a group G′ with ψ1fi = ψ2f2, there exists
a unique homomorphism ψ : G −→ G′ such that ψφ1 = ψ1 and ψφ2 = ψ2 i.e. the
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following diagram is commutative:

H
f1

xx

f2

&&
G1

φ1 //

ψ1

  

G oo
φ2

∃!ψ

��

G2

ψ2

~~
G′

The free product of groups G1 and G2 with amalgamated subgroup H is unique
(up to isomorphism) and we denote this group by G1 ⋆

H
G2.

Definition 2.2 (Free product of groups with commuting subgroups). Let H be a
subgroup of a group G1 and let K be a subgroup of a group G2. The group G =

(G1 ∗ G2, [H,K] = 1) generated by all the generators of groups G1 and G2 and
defined by all the relators of groups G1 and G2 together with all the relations of the
form [h, k] = 1, for all h ∈ H and k ∈ K, is called the free product of groups G1

and G2 with commuting subgroups H and K. In other words, G is the free product
of groups G1 and G2 modulo the normal closure of [H,K], the commutator of the
subgroups H and K, in the free product G1 ∗G2 i.e. G = (G1 ∗G2)/([H,K])(G1∗G2).
The free product of groups G1 and G2 with commuting subgoups H and K is unique
(up to isomorphism) and we denote this group by G = G1 ∗

[H,K]
G2.

Remark 2.1. Loginova in [6] studied the residual finiteness of free products of groups
with commuting subgroups. She established that the free product G = G1 ∗

[H,K]
G2 of

groups G1 and G2 with commuting subgroups H and K can be written as a double
amalgamation: (G1 ∗

H
(H ×K)) ∗

H×K
((H ×K) ∗

K
G2).

2.2. Group acting on graph.

Definition 2.3. A (oriented) graph Γ consists of a set X = V (Γ), a set Y = E(Γ)

and two maps
Y
y
−→
7−→

X ×X
(o(y),t(y))

and
Y
y
−→
7−→

Y
y
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which satisfy the following conditions: for each y ∈ Y , we have y = y, y ̸= y and
o(y) = t(y).

An element P ∈ X is called a vertex of Γ, an element y ∈ Y is called an (oriented)
edge, and y is called the inverse edge. For any y ∈ Y , the vertex o(y) is called
the origin of y and the vertex t(y) its terminus. These two vertices are called the
extremities of y.

Definition 2.4. A path in a graph is a finite or infinite sequence of edges which join
a sequence of vertices which are all distinct. In other words, a path is a sequence of
non-repeated vertices connected through edges present in a graph.

Remark 2.2. When a path contains n edges (n ∈ N), it is of length n and is denoted
path n. In this paper, a path n

•
a0 a1y1

•
a2y2
•................•

an−1 anyn
•

is often designated by a0 − a1 − a2 − ...− an. Note that a segment is a path 1 and a
circuit is a path such that the origin of the first edge is the terminus of the last edge.

Definition 2.5. A graph is said to be connected if any two vertices are the extremities
of a path.

Definition 2.6. A tree is a connected non-empty graph without circuits (in other
words, a tree is a graph in which any two vertices are connected by exactly one path).

Definition 2.7. An action of a group G on a graph Γ is an application
· : G× Γ

(g,x)
−→
7−→

Γ
g·x

such that for any g, h ∈ G, P ∈ V (Γ) and y ∈ E(Γ), we have:

i) 1 · P = P and 1 · y = y (1 is the identity of G);
ii) g · (h · P ) = (gh) · P and g · (h · y) = (gh) · y.

If i : E(Γ) −→ E(Γ) is the map y 7−→ i(y) = y, then g.i(y) = i(g.y).

Definition 2.8. Let Γ be a graph on which acts a group G. Let x ∈ Γ i.e., x ∈ V (Γ)

or x ∈ E(Γ). The stabilizer of x is the set

Gx = {g ∈ G, g.x = x}.

Gx is a subgroup of G.
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Remark 2.3. If y ∈ E(Γ), then Gy = Gy. Indeed, let y ∈ E(Γ). For any g ∈
Gy, g.y = g.y = y. So, Gy ⊆ Gy. Conversely, for any g ∈ Gy, g.y = g.y = g.y = y =

y. Thus, Gy ⊆ Gy. Finally, Gy = Gy.

Definition 2.9. Let Γ be a graph on which acts a group G. An inversion is a pair
(g, y) where g ∈ G and y ∈ E(Γ) such that g.y = y. If there is no such pair we say
that G acts without inversion.

Let G be a group that acts on a graph Γ. We define on Γ the relation R as
follows: xRy ⇔ ∃g ∈ G such that y = g.x. The relation R as defined is an
equivalence relation.

For any x ∈ Γ, the class [x] of x modulo R is defined to be:

[x] = {g.x; g ∈ G}.

Definition 2.10. Every equivalence class of R as defined above is called a G−orbite.
For any x belonging to a graph Γ, we put O(x) the orbite of x.

[x] = O(x) = {y ∈ Γ; yRx} = {g.x; g ∈ G}.

If G acts on Γ without inversion, the quotient graph noted by G/Γ is the set of orbites
of Γ. The set of vertices (resp. of edges) of G/Γ is the quotient of V (Γ) (resp. de
E(Γ)) under the action of G.

Throughout this paper, every action of group on a graph is without inversion.
In the following, we present the notion of graph morphism. It is in fact an

application between two graphs which preserves the structure of these graphs
(that is to say which preserves the adjacency relations present in the initial graph).
Note that in [5, Theorem 2.7], K. K. Williams proved that in the category of graphs,
a graph morphism is an isomorphism if and only if it is bijective as a function. We
can therefore limit ourselves to the following definitions as described in [10] p.
19.

Definition 2.11. The morphism from a graph Γ to a graph Γ′ is a map α : Γ −→ Γ′

which takes edges to edges and the origin and terminus of α(e) are, respectively, the
images of the origin and terminus of edge e.

A morphism α : Γ −→ Γ′ is an isomorphism if there is a morphism β : Γ′ −→ Γ

such that α ◦ β and β ◦ α are identity maps.
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Let G be a group acting on a graph Γ and let T be a segment or a path 2 in Γ.
In this paper, [T ] denotes the set {g.T ; g ∈ G}.

Proposition 2.1 ( [11]). Let Γ be a connected graph on which acts without inversion
a group G. Every subtree T ′ of G/Γ lifts to a subtree of Γ.

Definition 2.12. Let G be a group acting on a graph Γ. The fundamental domain
of Γ modulo G, is every subgraph T of Γ such that T −→ G/Γ is an isomorphism.

Remark 2.4. If a group G acts on a graph Γ with a subgraph T as a fundamental
domain, then G.T = Γ. In fact G.T = G.(G/Γ) = Γ.

If a group G acts on a graph with a segment T as a fundamental domain, any
segment of this graph is a result of the action of an element of G on T . Indeed, if T ′

is any segment in this graph, it has the same orbite with T , since the last one is a
fundamental domain of this graph modulo G. So, [T ′] = [T ] and then T ′ = g.T with
g ∈ G.

J.P. Serre in [11] (Theorem 6 and Theorem 7) established a convenient equiv-
alence between amalgamated free products of groups and groups acting on trees
with a segment as fundamental domain. In the following, we give more de-
tails about the tree of free product of groups with amalgamated subgroup G =

Z/3Z ∗
A
Z/4Z with A = {0}. The corresponding tree is briefly presented in [11],

example 4.2 p.35.
Put G1 = Z/3Z = {0; 1; 2}, G2 = Z/4Z = {0; 1̇; 2̇; 3̇} and A = {0}. The tree on

which acts G is given on the next page.
Note that in this tree, any vertex is indistinguishable to some other vertices; for

example, 2G2, 21̇G2, 22̇G2 and 23̇G2 are geometrically at the identical position.
In the following section, we extend the notion of contraction of disjoint subtrees

in a graph presented in [10] p. 26 to the contraction of subtrees which are not
necessarily disjoint. Let Γ be any connected graph and let Λ be a subgraph which
is a union of a family Λi, i ∈ I of subtrees where any two subtrees Λi and Λj of
this family are disjoint or have at most one common vertex. We shall define a new
graph called a contraction of Λ in Γ or a subtrees contraction of Λ in Γ denoted
by Γ/Λ as follow. Each Λi gives one vertex ai of Γ/Λ and each vertex of Γ outside
Λ also gives one vertex of Γ/Λ. If P is a common vertex of Λi and Λj, it becomes
an edge P = eij between ai and aj in Γ/Λ. The edge set of Γ/Λ is defined as the
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union of the set of eij and the set of edges of Γ which are not in Λ. The origin
and terminus of any edge of Γ/Λ is defined from the corresponding map on Γ by
passing to quotients (see [10] p. 26) and those of eij are ai and aj respectively.
The map e 7−→ e in Γ and eij 7−→ eij = eji defines the inverse of any edge of Γ/Λ.

12̇G1•

12̇A

•
13̇G1

13̇A

•
1̇1G2

1̇G1

1̇1A

•1̇2G2

1̇2A

•
11̇G1

11̇A • 1G2

0G1

1A

•

0G2

1̇A

•
2̇1G2

2̇G1

2̇1A

• 23̇G1

23̇A

•

2G2

2A

0A • 2̇A

3̇G1

3̇A

•

2̇2G2

2̇2A

•

22̇G1

22̇A

21̇G1

21̇A

•

3̇2G2

3̇2A

3̇1G2

3̇1A

•

• • • •

In the example given on the next page, Λ = Λ1 ∪ Λ2 ∪ Λ3.
Using [10, Corollary 13 p. 27] or [11, Corollary 2 p. 23] we get the following

proposition.
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• •

Γ = •
x3 x4y3

x1

y1

x2

y2

•
x5y4 •

x6

y5

x7

y6

• •

• •

Λ1 = •
x3

x1

y1

x2

y2

Λ2 = •
x4 x5y4 • and Λ3 = •

x5

x6

y5

x7

y6

• •

Γ/Λ = •
a1 a2y3 •

a3x5=e23 •

Proposition 2.2. Let Γ be a graph and Λ a subgraph which is a union of family
Λi, i ∈ I of subtrees where every two subtrees Λi and Λj of this family are disjoint or
have at most one common vertex. Γ is a tree if and only if Γ/Λ is one.

Proof. Let us distinguish two cases:

i. If the family Λi, i ∈ I is such that every two subtrees Λi and Λj are disjoint,
then by [10, Corollary 13 p. 27], Γ is a tree if and only if Γ/Λ is one.

ii. Assume that in Γ, there exists two subtrees Λi and Λj of Λ having exactly
one common vertex Pij. Then, the vertex Pij stretches into an edge eij

between these subtrees to make them disjoint. Note that the obtained
graph Γ1 after this process is a tree if and only if Γ is one. Indeed:

- If Γ is connected then Γ1 is too since there is no cancelled edge by
adding the edge eij. Conversely, if Γ is not connected then Γ1 is not as
well, since the added edge is not between two different vertices of Γ.

- If Γ does not have a circuit then Γ1 does not have one, since the added
edge is not between two different vertices of Γ. Conversely, if Γ have
a circuit then Γ1 has one, since there is no cancelled edge by adding
the edge eij.
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By doing the same thing iteratively for all two subtrees Λi and Λj of Λ
having exactly one common vertex, we obtain a graph Γ′ containing
a disjoint union of family Λi, i ∈ I. By the previous justification, Γ is
a tree if and only if Γ′ is one. Using again [10, Corollary 13 p. 27], Γ′

is a tree if and only if Γ′/Λ is one. Observe that Γ′/Λ = Γ/Λ to finish
the proof.

□

3. PROOF OF THEOREM 1.1 AND THEOREM 1.2

3.1. Proof of Theorem 1.1. We first prove the following lemmas.

Lemma 3.1. Let G be a group acting on a graph Γ′ and let

T ′ = •
a′ ci

•
b′j
•

a path 2 be a fundamental domain of Γ′ mod G.
Let Gc, Gi = Gi and Gj = Gj be the stabilizers of the vertex c and the edges i and

j of T ′. If any element of Gi commutes with those of Gj, then Gc = Gi ×Gj.

Proof. Assume that any element of Gi commutes with those of Gj. Let prove that
Gc = Gi ×Gj.

(1) Gi×Gj ⊂ Gc. Indeed, let x ∈ Gi×Gj = {x1x2/x1 ∈ Gi, x2 ∈ Gj and x1x2 =
x2x1}. There exist x1 ∈ Gi and x2 ∈ Gj such that x = x1x2 and x1x2 = x2x1.
Then, x1 ∈ Gi ⇒ x1 ∈ Gc since stabilizing an edge means stabilizing its
vertices. Gi = Ga′ ∩ Gc. Also, x2 ∈ Gj ⇒ x2 ∈ Gc since Gj = Gb′ ∩ Gc.
Thus, x = x1x2 ∈ Gc.

(2) Let now prove that Gc ⊂ Gi × Gj. Let x ∈ Gc. Put T ′
1 = x.T ′. We can

distinguish the following cases:
(a) T ′

1 = T ′ in this case, x ∈ Gi; x ∈ Gj and so x ∈ Gi ×Gj.
(b) T ′

1 = a′ − c− x.b′ in

•
a′ ci

•
b′j
•

x.b′

x.j
•

In this case, x ∈ Gi and x /∈ Gj. And, x ∈ Gi ⇒ x ∈ Gi ×Gj.
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(c) T ′
1 = x.a′ − c− b′ in

•
a′ ci

•
b′j
•

x.a′

x.i
•

In this case, x ∈ Gj and x /∈ Gi. And, x ∈ Gj ⇒ x ∈ Gi ×Gj.
(d) T ′

1 = x.a′ − c− x.b′ in

•
a′ ci

•
b′j
•

x.a′

x.i
•

x.b′

x.j
•

In this case, x ∈ Gc, x /∈ Gi and x /∈ Gj.
Consider the path T ′

2 = a′ − c − x.b′. There exists x1 ∈ G such that
x1.T

′ = T ′
2. So x−1

1 .T ′
2 = T ′. See that x−1

1 ∈ Gi and x−1
1 x ∈ Gj.

Considering x = x1x
−1
1 x we can take x2 = x−1

1 x ∈ Gj, so that x =

x1x2. And since x1x2 = x2x1 by the hypothesis, clearly x ∈ Gi × Gj.
Finally the equality Gc = Gi ×Gj holds.

□

Lemma 3.2. Let G be a group acting on a tree Γ′ with a path 2 as a fundamental
domain. Then there exists a tree Γ (and only one, up to isomorphism) on which G

acts with a segment as fundamental domain.

Proof. Let G be a group acting on a tree Γ′ with

T ′ = •
a′ ci

•
b′j
•

a path 2 as a fundamental domain. We designate this action by (.). Let determine
a tree Γ on which G acts with the segment

T = •
a bc

•

as a fundamental domain. This action will be designated by (◦).
Put

T1 = •
a′ ci

• ; T2 = •
c b′j

• .

According to [11, Theorem 7], there exists a tree Γ1 (subtree of Γ′) on which the
subset Ga′ ∗

Gi

Gc of G acts with a segment as fundamental domain. Since two
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segments in a graph are isomorphic, without lose to the generality, consider that
this fundamental domain is T1. By contraction, we put tree Γ1 to a vertex a. Argue
similarly, the subset Gc ∗

Gj

Gb′ of G acts on a tree Γ2 (subtree of Γ′) with segment

T2 as fundamental domain. Again by contraction, we put Γ2 to a vertex b. Now, c
is a common part of Γ1 and of Γ2, it stretches into an edge between a and b.

Note that Γ′ is made up of "multiples" of Γ1 and Γ2, that is to say Γ′ = {g.Γ1 ∪
g′.Γ2, g, g

′ ∈ G}. Indeed, when G acts on Γ′, the action of an element g ∈ G on T ′,
gives a path 2 in Γ′ such that any segment in g.T ′ will be a result of the action of g
on either T1 or T2.

Now, g.T1 and g.T2 are segments in g.Γ1 and in g.Γ2 respectively. So

Γ′ = G.T ′ = G.T1 ∪G.T2 = G.Γ1 ∪G.Γ2.

For any g ∈ G, contract in Γ′ subtree g.Γ1 to a vertex g ◦ a; a subtree g.Γ2 to a
vertex g ◦ b and the edge between g ◦ a and g ◦ b is g ◦ c.

Put Γ = Γ′/Λ where Λ is the union of subtrees g.Γ1 and of g.Γ2, g ∈ G. See that
the graph Γ is defined by:

V (Γ) = {g ◦ a, g ◦ b; g ∈ G}; E(Γ) = {g ◦ c; g ∈ G}.

Note that Γ is a tree as a subtrees contraction in the tree Γ′. See Proposition 2.2.
(◦) defines an action of G on Γ as we illustrate in the following

G× Γ −→ Γ ; (g, •
g′◦a g′◦bg′◦c

• ) 7−→ •
gg′◦a gg′◦bgg′◦c

• with g′ ∈ G.

See that G/Γ = •
a bc

• and then T = •
a bc

• is the funda-
mental domain of Γ mod G. □

We are now ready to prove the Theorem 1.1.

Proof. Loginova in [6] proved that:

GP ′ ∗
[Gy1 ,Gy2 ]

GQ′ = (GP ′ ∗
Gy1

(Gy1 ×Gy2)) ∗
Gy1×Gy2

(GQ′ ∗
Gy2

(Gy1 ×Gy2)).

1 ⇔ 2) The implication 1⇒2 results from the Lemma 3.2.
The implication 2⇒1 follows from the fact that, a given graph is a tree if and

only if one contraction of subtrees in this graph is a tree (see Proposition 2.2).
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Note that, Γ is a tree which is a subtrees contraction of the graph Γ′ as described
in the proof of Lemma 3.2.

2 ⇔ 3) Let G be a group acting on a tree Γ with the segment

T = •
P Qy

•

as a fundamental domain.
In accordance with the proof of Lemma 3.2, P is obtained by contraction of

one subtree Γ1 of Γ′ on which acts the subgroup GP ′ ∗
Gy1

GR of G with T1 =

•
P ′ Ry1

• as a fundamental domain; Q is obtained by contraction of one

subtree Γ2 of Γ′ on which acts the subgroupGR ∗
Gy2

GQ′ ofGwith T2 = •
R Q′y2

•

as a fundamental domain; y = R.
Through the Theorem 6 in [11], Γ is a tree if and only if

L = GP ∗
Gy

GQ −→ G

is an isomorphism.

Let determine GP , Gy and GQ.

Firstly, we determine Gy = GR:

Gy = Gy1 ×Gy2 by Lemma 3.1.

Secondly, we determine GP and GQ:

See that if g ∈ GP ′ ∗
Gy1

GR, we have g.Γ1 = Γ1 then g◦P = P and if g /∈ GP ′ ∗
Gy1

GR,

we have g.Γ1 ̸= Γ1, and then g ◦P ̸= P . Recall that (.) and (◦) denote the action of
G on Γ′ and on Γ respectively, (as describe in the proof of Lemma 3.2). So, when
G acts on Γ, GP = GP ′ ∗

Gy1

GR.

Similarly, we prove that GQ = GQ′ ∗
Gy2

GR.

According to the determination of GP , Gy and GQ above, we get that Γ is a tree
if and only if

(GP ′ ∗
Gy1

(Gy1 ×Gy2)) ∗
Gy1×Gy2

(GQ′ ∗
Gy2

(Gy1 ×Gy2)) −→ G

is an isomorphism.
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Applying Proposition 1 in [6],it follows that Γ is a tree if and only if

GP ′ ∗
[Gy1 ,Gy2 ]

GQ′ −→ G

is an isomorphism. Finally, the theorem is proven. □

3.2. Proof of Theorem 1.2 and Corollary 1.1. Proof of Theorem 1.2

Proof. Let G = G1 ∗
[H,K]

G2. We define the graph Γ′ on which acts G as follows:

V (Γ′) = (G/G1) ∪ (G/H ×K) ∪ (G/G2)

and
E(Γ′) = (G/H) ∪ (G/H) ∪ (G/K) ∪ (G/K).

G acts obviously on Γ′ as follows:

G× Γ′

(g1;g2.x)
−→
7−→

Γ′
(g1g2).x

for all x ∈ G1 ∪G2 ∪ (H ×K) and g1, g2 ∈ G.
With this action of G on Γ′ (denoted by (.)), we see that the stabilizers of the

vertices 1.G1, 1.H×K and 1.G2 are respectively the groups G1, H×K and G2 and
those of the edges 1.H and 1.K are respectively H and K.

Now, put P ′ = 1.G1, R = 1.H ×K, Q′ = 1.G2, y1 = 1.H and y2 = 1.K.
The path 2

T ′ = •
P ′ Ry1

•
Q′y2
•

is a fundamental domain of Γ′ modulo G. Applying 3) =⇒ 1) of Theorem 1.1, we
get that Γ′ is a tree.

Let us prove the uniqueness. Assume that G acts on a tree Γ′′ with fundamental
domain a path 2

T ′′ = •
P ′′ R′y′1

•
Q′′y′2
• .

We denote this action by (•). Consider the graph isomorphism

α1 : T
′ −→ T ′′, P ′ 7→ P ′′, Q′ 7→ Q′′, R 7→ R′, y1 7→ y′1, y2 7→ y′2.

Since T ′ and T ′′ are fundamental domain of Γ′ and Γ′′ for the actions (.) and (•)
respectively, α1 can extend to a morphism α : Γ′ −→ Γ′′ as follows:

α(g.x) = g • α1(x) for all x ∈ T ′ for all g ∈ G.
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Let β1 : T ′′ −→ T ′ the reciprocal isomorphism of α1. As above, β1 can also
extend to a morphism β : Γ′′ −→ Γ′. Clearly, that β ◦ α = IdΓ′ and α ◦ β = IdΓ′′

and then Γ′ and Γ′′ are isomorphic. □

Proof of Corollary 1.1

Proof. Let T1 be a segment in a tree Γ′ on which acts a group G with T ′ a path 2 as
fundamental domain. Assume that T ′ is the union of the segments T ′

1 and T ′
2.

(1) Since G/Γ′ ∼= T ′ then [T1] = [T ′
1] or [T1] = [T ′

2]. Without lose to the gen-
erality, assume that [T1] = [T ′

1]. Therefore, there exists g ∈ G such that
T1 = g.T ′

1. Further, the segment g.T ′
2 is connected to T1 and the resultant

path 2 is g.T ′.
(2) T1 = g.T ′

1 with g ∈ G. Let g′ be a nonidentity element belonging to the
stabilizer of common vertex between T ′

1 and T ′
2. Then gg′.T ′

1 = T2 is con-
nected to g.T ′

1 = T1. Finally, the path 2 which is the union of T1 and T2 is
the result of action of elements of G on T ′

1.

□

4. ILLUSTRATIVE TREES

4.1. Tree of free product of groups with commuting subgroups. Consider the
following free product of groups with commuting subgroups: G = G1 ∗

[H,K]
G2 =

{1; g1; g′1;h1; k1;m1; ...} with h1 ∈ H, k1 ∈ K, m1 ∈ (H×K)− (H∪K), g1 ∈ G1−H
and g′1 ∈ G2 −K. Put A = H ×K = {1;h1; k1;m1; . . .}. The corresponding tree on
the following page.

4.2. Illustrative example of tree of free product of groups with commuting
subgroups. Let present a concrete example of a tree on which acts a free product
of groups with commuting subgroups. Consider the following free product of
groups with commuting subgroups:



FREE PRODUCTS OF GROUPS WITH COMMUTING SUBGROUPS AND TREES 119

• •

•

g1g′1G1

g1g′1H

• • •

g′1g1G2

g′1g1K

• •

•

g1g′1A

g1g′1K

• •

m1g1G2

m1g1K

•

h1g′1G1

h1g′1H

• •

g′1g1A

g′1g1H

•

g1G2

g1K

g1h1G2

g1h1K
g1m1G2

g1m1K

•

m1g1A

m1g1H

•

h1g′1A

h1g′1K

• •

g′1m1G1

g′1m1H

g′1k1G1

g′1k1H

g′1G1

g′1H

•g1k1G1

g1k1H

•
g′1h1G2

g′1h1K

• g1m1G1

g1m1H

g1A

•

g1H

g1g1A

g1g1H

h1g1A

h1g1H

1G1 1H 1A • 1K 1G2

k1h1G2

k1h1K

m1G2

m1K

m1G1

m1H

h1k1G1

h1k1H

h1G2

h1K

k1G1

k1H

•

k1g′1A

k1g′1K

g′1K

g′1g
′
1A

g′1g
′
1K

•g′1m1G2

g′1m1K

g′1A

•

g1g1G2

g1g1K

•

h1g1G2

h1g1K

• •

k1g1A

k1g1H

•

m1g′1A

m1g′1K

•

k1g′1G1

k1g′1H

•

g′1g
′
1G1

g′1g
′
1H•

k1g1G2

k1g1K

•

m1g′1G1

m1g′1H

• • • • • •

G = Z/4Z ∗
[2Z/4Z,2Z/4Z]

Z/4Z. Put G1 = Z/4Z = {0; 1; 2; 3} , G2 = Z/4Z =

{0̇; 1̇; 2̇; 3̇} , H = 2Z/4Z = {0; 2} ⊂ G1 and K = 2Z/4Z = {0̇; 2̇} ⊂ G2. Recall
that in G = G1 ∗

[H,K]
G2, 0 = 0̇. The corresponding tree is the following:
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• • • • • • • • •

•
11̇1K

11̇1G2

11̇3K

11̇3G2

• •
21̇3K

21̇3G2

21̇1K

21̇1G2

•
23̇3K

23̇1A

23̇3G2

•
1̇11̇H

1̇11̇G1

1̇13̇H

1̇13̇G1

•

•

13̇1K

13̇1G2

13̇3K

13̇3G2

•
11̇1H

11̇1A

• •
1̇11̇K

1̇11̇A

•

1̇31̇H

1̇31̇G1

1̇33̇H

1̇33̇G1

•
11̇H

11̇G1

•

21̇1H

21̇1A

•

23̇1H

23̇G1

•

23̇1K

23̇1G2 •
1̇1K

1̇1G2

•

13̇1H

13̇1A

13̇H

11̇A

13̇G1
• • • • •

1̇31̇K

1̇31̇A

1̇3K

1̇3G2

1̇1A

•

11̇K

•

21̇2K

21̇2G2

21̇H

21̇G1

23̇H

•

1̇1H

•

11̇2K

11̇2G2 •

12̇1K

12̇1G2

12̇3K

12̇3G2

•

1̇21̇H

1̇21̇G1

1̇23̇H

1̇23̇G1

•

1̇12̇H

1̇12̇G1

•

1K

1G2

•

21̇K

21̇A

•

1̇H

1̇G1

•

31̇2K

31̇2G2

•
12̇H

12̇G1

12̇1H

12̇1A

•

1̇21̇K

1̇2G2

1̇21̇A

1̇2K

•

3̇12̇H

3̇12̇G1

•
3G2

31̇A

31̇K

1A

3K

•

1H

0G1 0A0H •

2G2

2K

2̇H

2̇G1

0G20K •

1̇K

•

3̇H

3̇G1

1̇A

3̇1H• •2̇33̇H 2̇31̇A2̇33̇G1

2̇31̇K
2̇3G2

2̇31̇H

2̇31̇G1

•

31̇H

31̇G1

33̇H

33̇G1

•

2̇12̇H

2̇12̇G1 •

2̇1H

•

2̇3K

2̇1A

•

3̇3K

3̇1A

3̇3G2

3̇1K

3̇1G2

•

•

31̇1H

31̇1A

•

33̇1H

•

33̇3K

33̇3G2

33̇1A

•
2̇1K

2̇1G2

•

3̇33̇H

3̇33̇G1

•

3̇31̇K

•

3̇11̇K

3̇11̇A

•
2̇11̇K

2̇11̇A•
31̇1K

31̇1G2

31̇3K

31̇3G2• •
33̇1K

33̇1G2

•
2̇13̇H

2̇13̇G1

2̇11̇H 2̇11̇G1

•
3̇31̇H3̇31̇A

3̇31̇G1

•
3̇13̇H

3̇13̇G1 •
3̇11̇H

3̇11̇G1• • • • • •
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- Note that the relation 22̇ = 2̇2 in G1 ∗
[H,K]

G2 is obviously visible on the

above tree. For example, 32̇G1 = 122̇G1 = 12̇2G1 = 12̇G1. Likewise,
3̇2G2 = 1̇2G2, 22̇G1 = 2̇G1, 2̇2G2 = 2G2, 3̇G1 = 1̇2̇G1 = 3̇2G1 = 1̇2̇2G1 =

122̇G1 and 3G2 = 12G2 = 32̇G2 = 122̇G2 = 12̇2G2.
- Note also that, 3A = 12A = 1A and likewise 3̇A = 1̇A, 3H = 1H and
3̇K = 1̇K.

- Any vertex is then indistinguishable to some other vertices; for example
11̇A, 13̇A and 11̇2A are at the identical position.

- The path 2 •
11̇G1 11̇A11̇H

•
13̇G113̇H
• is not a result of the action of an ele-

ment of G on the fundamental domain. This illustrates the second point
of the Corollary 1.1.
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