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ON SOME NEW PROPERTIES OF THE LAMBDA GAMMA FUNCTION
Sunday Sandow!, Kwara Nantomah, and Mohammed Muniru Iddrisu

ABSTRACT. This paper establishes new properties of the lambda gamma function
and further introduces a lambda analogue of the Riemann zeta function. We
also established a relationship between the lambda analogue of the Riemann zeta
function and the lambda analogue of the gamma function and some inequalities
involving the relationship.

1. INTRODUCTION

The gamma function is well known for its useful applications in almost all areas
of mathematics. In view of this, many mathematicians found the need for further
generalization of the function. Among these generalizations are; the multiple
gamma function, g-analogue of the gamma function, k-analogue of the gamma
function and the recent lambda analogue of the gamma function. Motivated by the
gamma function and the recent generalized lambda gamma function, this work is
focus on some new properties of the lambda gamma function and its relationship
with the Riemann zeta function. The following are some defintions and lemmas
used in the work.
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Definition 1.1. For x > 0, the gamma function is defined as

(1.1) [(z) = / t" e tdt,
0
and satisfies the properties
1 [es] u:p—l
(1.2) I'(x) = / du, x > 1,
(@) (@) Jo e*—1
and
1 = A
1. —— =xe” 1+ —-)e*.
(1.3) ) xe g<+k>ek

See [5, p. 64], [5] p. 103], [15, p. 71].

Definition 1.2. The digamma function, denoted by 1(x) is defined as

(1.4) Y(x) = %ln [(x),
and satisfies the properties
%0 o=t _ o—at
(1.5) W(x) = —7+/0 ﬁdt
and
00 e—t e—a:t
(1.6) P(x) = /0 (T 1 6t> dt,

where v = 0.57721 ... is the Euler Mascheroni constant.

The k' derivative of the digamma function known as the polygamma function
is defined as

(1.7) ¥ ( )—d—k ( )—ﬂlnF( ) = (=1)F! /OO the ™ dt
' T dk N T dghe = o l—et

Definition 1.3. [9)] Let x > 0 and \ > 0. Then the lambda gamma function is defined
in different forms as

(1.8) D\(z) = / t"temMdt
0

| AkIE?
(1.9) _klggo r(z+1)(z+2)... (v +k)

(1.10) — AT ().




On Some New Properties of the Lambda Gamma Function 143
Lemma 1.1. [9]]. The lambda gamma function satisfies the identity

(1.11) rkcz+-1)::§r;(x)

Definition 1.4. [9]. The logarithmic derivative of the lambda gamma function,
denoted by v\ (x) is defined as

d
(1.12) Uy(x) = e InT)(x),
and satisfies the properties
(1.13) Ua(z) = —In A+ ¢(x)
oo —t _ ,—at
(1.14) :—mA—7+/'3——i—w
g l—et

The existence of the gamma function as an extension of the factorial function for
noninteger values has useful applications in diverse areas such as fluid dynamics,
statistical mechanics, quantum physics as well as engineering. These importance
of the gamma function prompted the need for mathematicians to further general-
ize the gamma function for the purpose of broadening its domain of applications
in sciences. Among these generalizations is the recent lambda gamma function
introduced in [9].

The newly established lambda gamma function can be used to obtain solutions
for integrals of the form [ f(t) exp (—At)dt, which elementary solution does not
exist. More importantly, in a similar way with the classical gamma function, the
integrand in also describes exponentially decay proccesses in time or space
which reveals the usefulness of the lambda gamma function in analysis [4, p. v].

Recent results presented an extended concept of special matrix functions as a
modified degenerate gamma matrix functions and some properties of the new
function. The results also presents limit representation as well as asymptotic
equality and an infinite product representation. The established function of matrix
arguement is an analogue of the gamma function which charaterizes the lambda
analogue of the gamma function established in [9]. The function reduces to the
gamma matrix functions as A — 0*. See [1], [21, [8].

In this paper, the goal is to establish some new properties of the lambda gamma
function and further introduces a lambda analogue of the Riemann zeta function.
We also establish a relationship betweeen the lambda gamma function and the
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lambda analogue of the Riemann zeta function.The results in this paper serves
as an extension of the results obtained in [9]] which provides further properties
that can support findings in the lambda gamma function related problems. For
example, if f(¢) is a power function and g,(¢) = —\t, then by change of variables

o T(z+1)
x At _
/0 tYe Mdt = e

one will obtain

in which case the ordinary gamma function is then considered for the final solution
with the approperiate choice of \.

2. PRELIMINARIES

Lemma 2.1. [5, p. 94] For t > 0 and u > 0, the Frullani’s integral representation
for Int is given as

[ee] —Uu —ut
2.1) Int = / (6— _ € > du.
0 u u

Lemma 2.2. [5, p. 103] For x > 1, the Riemann zeta function is defined as

[e.9]

2.2) () =S =

me’
m=1

Lemma 2.3. [5, p. 103] For x > 1, the Riemann gzeta function, ((x) satisfies the
integral representation,

1 e r—1
2.3) (@)= 13 /0 S ——du

Lemma 2.4. (Cauchy product of series) [5, p. 14] Let > .~ a; and »_.° b; be two
infinite series. Then the Cauchy product of the two series is defined as

(2.4) (Z ai> (Z bj> =D ) by
i=0 =0 k=0 p=0

Lemma 2.5. [3] Let T be a function. If T' is completely monotonic on (0, cc), then
the function e~ is also compeletely monotonic on (0, 00).

Lemma 2.6. [3] Let «; and (3; be real numbers where i = 1,2,3...,n such that
O<an<ap<az3< <0, 0< < B < fs-- < Ppand Y7 o <00, B If
[ is decreasing and convex on R, then > .=, f(8:) < Yoo, f(ou).
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Lemma 2.7. [6] Let f, g be nonneggative functions of a real variable and m and n
are real numbers. If f, g are integrable functions, then the inequality
2

(2.5) ( / bg(t)(f(t))mdt) ( / bg(t>(f(t))”dt) > ( / ()™ "dt) |

holds.

Lemma 2.8. [6]. Let p > 1 and q > 1 be real numbers such that }D + é = 1. Then for
integrable functions, f, g : [a,b] — R. the inequality

<(/ b|f<x>|pdx)’1’ (/ b|g<:c>|qczx); ,

b
(2.6) / f(2)g(x)de

holds.

3. RESULTS AND DISCUSSIONS

Proposition 3.1. The lambda gamma function has an Infinite product representation
of the form

1 ad T\ -—a
. v L (14 ) e,
(3.1) ) Nxe H +k ek
k=1
for z > 0and X > 0.
Proof. Using the identity (1.10)), we have
1 1
(3.2) =\
Ia(x) I'(x)
Now, substituting (1.3)) into (3.2) gives (3.1), which completes the proof. O

Proposition 3.2. The A—diagamma function has the following integral representa-
tions

0 67/\t efxt
(3.3) w(:c):/o ( — - 1_6_t) dt
(3.4 [T
0 t
TN E))
et —1"
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Proof. By using equations (1.14), (2.1) and (1.13]), we obtain
Ua(z) = —In X + ¢(z)

o] e—t e—)\t 00 e—t e—act
- [ (5-5)+] Q__ )ﬁ
/0 ( t t ) 0 t 1—et
e8] -\t —xt
:/ e e .
0 t 1—e-t

which proves (3.3)).

Next, let s + 1 = ¢’. Then 5 = ¢ * and In (s + 1) = ¢. Then substituting these
into (3.3) gives

r A T
o= [ G o
o _ln(s—i—l) 1— 5] s+l
r A T
_ /°° =) M =) M
o |(s+1)In(s+1) s
e L
o [(s+D)In(s+1) s+1 s
Now, spliting the integrals gives
fo%) 1 A %) x
=) 1 ds
(3.6) (@) /0 (s+1)In(s+1) ° /0 <S+1> s
By substituting s + 1 = ¢ into the first integral gives
o0 (%)A 00 At
. - ds = —dt.
G7 /0 GrhmGrD” /0 i

Substituting (3.7) into gives
o dt
e = [ @ =@
0
which proves (3.4)).

Next, using with the substitution s = 1+, we have
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Ya(r) = — /10 <e# — s””) 8(1+—%)2ds

1—s

0 “A(1—s) 1
_ — s — gt —d
/1 <e ° > s(1—s) i
= /1 (eim*S) — sx> 1 ds
—Jo * s(1—s)

which gives (3.5). O

Remark 3.1. As a result of Proposition the following are obtained.

R S Y o G
' 0 1+t)t ) t  1-et)t

—A(1—t)
——— _

! (&
(3.10) =—(InX+7).

Corollary 3.1. The A—digamma function satisfies the identity
0 efAt efact
(3.11) PYa(z+1) = / (— — ) dt.
0

t et —1

Proof. By Proposition
00 e—)\t e—a:t
- - dt
(@) /0 ( t 1— e")
00 —At —(z—1)t
= / £ < dt.
0 t et —1

Then by replacing x with = + 1, we obtain (3.11)). O

Theorem 3.1. Let x > 1, A\ > 0. Then the lambda gamma function satisfies the
relationship,

1 oo r—1
(3.12) Ty(2) = C(x)/o ei_ldu.
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Proof. By using (1.8) with ¢ = mu where m € N, we have
[ee]
Ca(z) =m® / u ey,
0

Rearranging the equation gives

1 1 oe
[ / ux—le—)\mudu‘
m*  Tx(z) Jo

Now, introducing summation with respect to m gives

~ ] - 0
(3.13) mzzjl e NES /0 u! n;e’\m“du.
Since >~ e ™ is a geometric series, we have
- 1

(3.14) m;e—m =S
By substituting into and rearranging (3.13), we obtain the relation
(3.15) Iy(2) = — /oo L

((x) Jo e —1

O

Definition 3.1. For x > 1 and A > 0, the lambda analogue of the Riemann zeta
function is defined as

e e} T

(3.16) (@) = >

Corollary 3.2. The lambda analogue of the Riemann zeta function satisfies the iden-
tity

(3.17) G(z) = A"(C().
Proof. The identity (3.17)) follows from (3.16]). O

Proposition 3.3. For x > 1, the lambda analogue of the Riemann zeta function
satisfies the integral representation

o0 r—1
(3.18) () = 1@ / Y.
0
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Proof. We begin by substituting A\t = mu, m € N into (1.8 which gives

o0 z—1 z o0
Ca(z) :/0 (%) e_m“%du: %/0 u”te ™ du.

Rearranging gives

A? 1 e
(3.19) — = / ut e ™ .
m*  Ta(z) Jo
Summing both sides of ([3.19) from m = 1 to oo gives
o T 1 [e's) o0
3.20 — = LY e ™du.
(3.20) > n(x)/o Y e
Now, substituting " °_, ™™ = —- into (3.20) yields
1 o0 u:c—l
3.21 = du.
( ) C)\(x) F)\(.T) \/0 et — 1 U
This completes the proof. O

Proposition 3.4. Let x > 1. Then the integral identity
00 t 2
(3.22) / dt =
0

eM —1 62

is valid.
Proof. Using (3.21]), we proceed as

/ooo Y = G(@)Ta(z) = A (@) AT () = ¢(2)I().

ev —1

Now, substituting x = 2 and using identity ([3.21)) at A = 1 gives
< u
du = ((2)I'(2) =
| = core)
Next, letting v = \t, we have

o0 U [ee] t
3.23 du = \? dt.
(3:23) /0 e 17" /0 e —1

Rearranging (3.23]), we obtain

R 1 [ 72
dt = — du = —.
/0 A 17T ) w1 T e

2
6

This completes the proof. O
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Proposition 3.5. Let x > 1. Then the product ((x)((z) has a double sum represen-
tation of the form:

(3.24) M - i Zm: u

m=1 i=1

forne N, meN.

Proof. Using (2.2)) and (2.4)), we obtain

Ga)(a) = <Z %) (Z mi> > [Z ﬁ]

m=1 m=1 m=1 [i=1
=N
m=1 i=1
which completes the proof. O

Proposition 3.6. For © > 0, the lambda analogue of the Riemann zeta function
satisfies the identity

325 o) _ J Sy

Now, we have

(3.26) C(z) = \= i i %

m=1 =1
By taking the square root of both sides and rearranging gives (3.25]), which ends
the proof. O

Theorem 3.2. Let x > 0 and 0 < u < 1. Then the function

~ Da(uz +1)

is decreasing.
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Proof. By taking logarithm of ¢, ,(z), we obtain
Ingy,(r) =Inl(urx+1) —InTy(x +1).
Differentiating In ¢, ,(z) with respect to z yields

\a@)  uli(uz+1)  uly(z+1)
oru(®)  Ta(uz+1) Thz+1) upr(ur +1) — uhy(z + 1)

= u[hr(uz +1) —r(z + 1)] < 0.

This completes the proof. O

Corollary 3.3. Let + > 0 and 0 < u < 1. Then the function ¢, ,(z) satisfies the
inequality
1 < Iy (ux + 1) < 1

(3.28)

pT'OO’. By lheorem we obtain
im ¢ > > lim ¢
il 0 )\,u(x) = )\,u(x) = :lvl 1 )\,u(x)7

which yields (3.28). O

Remark 3.2. Theorem [3.2] and Corollary [3.3] are similar to results obtained for the
p, k— analogue of the gamma function in Lemma 2.3 and Theorem 2.4 of [|10]].

Theorem 3.3. Let «; and (3; be real numbers where i = 1,2,3...,n such that 0 <
a1 <ay <3< <0< B << Py <Bpand D o <3P for
m =1,2,3,...n. Then the function

529 iy =T Bz 20

is logarithmically completely monotonic on (0, c0).

Proof. Let

Ti(z) =Infi(z) = > [InTx(z+ B;) — InTx(z + ay)] .
=1
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Differentiating 7 (z), we obtain

Lo [Ty (z + By) P’)\(a: + ;)
Nlw) = Z {P,\(ﬂj + ;) I\/\(SU + o)

Z Ua(x + Bi) — dalz + o).

Diffentiating 7’ (x) continuously for % times yields

m

(3.30) T () = D _[s o+ ) = 3 (@ + )

Since ¢/, (z) = ¢/(z), we have ¢\")(z) = ¢® (z). By substituting (I.7) into (3.30) ,

we obtain
m k_— 3 oo 1k — i
= k“/ wdt _ (_1)k+1/ wdt
1—et g l—et
=1
m the—(z+Bi)t 00 tho—(ztai)t
= (—1)M! / —dt —/ —dt
APV e A
=1
_ k+1 —(z+B6;)t —(z+ay)t
= (-1 Z/O — [e= (@00t _ o=(eait] gy
i=1
_ k+1 —(z+6;)t —(x+ay)t
_(—1)+/0 1_67t2[6(+’3)—6( " at
=1
e [T R s
= (-1) /0 1_6_t2[e it — e dt.
=1
By Lemma we have
Z [efﬁlt efazt] < 07
i=1
which gives
T = 0 [T S a0
g l—et — -
This completes the proof. O

Remark 3.3. Theorem generalizes the results of Theorem 10 in [3].

Remark 3.4. By Lemma we conclude that e~ is also completely monotonic.
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Theorem 3.4. The inequality

C)\($ + 2)

C)\(ZB -+ 1)
QG (z)

(3.31) (z+1) >z

holds.

Proof. Using Lemma 2.7|withm =2 —1,n =2 + 1, f(u) = v and g(u) = 5, we

ev—17?

have

o0 ux—l oo u:r;+1 0o 2
(3.32) </0 e“—ldu) (/0 e“—ldu> > (/o e“—ldu> .
By identity (3.18), we have
(3.33) Ca(z)0(2)Ta (2 +2)C(2 +2) > T3 (z + DGz + 1).

Rearranging (3.33) gives
O(z)O(r +2)Tx(z +2) S G+ 1DT(z+1)

3.34
( ) F)\(LL' + 1) o F,\ (33)
Using (L1.11)) with (3.34)), we obtain
rz+1 T
(3.35) T O@G(r+2) = TG+ 1),
Rearranging (3.35) proves (3.31)). OJ

Remark 3.5. When \ = 1, we obtain the results of Theorem 2.3 in [|7].

Remark 3.6. Inequality (3.31)) implies that the function x% is increasing.

Theorem 3.5. The inequality

D (2+2) G
3.36 L ANV
(5:30) DI = ¢, (2 4.2)
holds.

Proof. Using (3.18) and (2.6) with f(u) = (“T and g(u) = 4+~
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We proceed as

r—1

(L) ([ )
: [/oo ((J—pl)i) d“r l/m ((J—ql)é) du] -

Simplifying the inequality results

o N - SR
/ Y dug[/ Y du} [/ Y du} ,
o ev—1 o ev—1 g ev—1
which implies that

r, (9 ¥ f) & (% n f) < T (w)¢F ()T ()3 ()

S

p g 4q
Rearranging the inequality gives
D(E+5) _ dwedo
D) G(2+:)
which completes the proof. O

Remark 3.7. Theorem is similar to results of Theorem 3.3 obtained for the k-
analogue of the Riemann zeta function in [6].
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