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ABSTRACT. This paper investigates the numerical approximation of a system of
heat equations with nonlinear boundary conditions. We prove that the solution of
a semidiscrete form of above problem blows up in a finite time. We also establish
certain conditions under which simultaneous blow-up occurs for the solution of
the semidiscrete problem. After showing that the numerical blow-up time con-
verges to the theoretical blow-up time as the mesh size tends to zero, we finally
present some numerical results to illustrate key points of our work.

1. INTRODUCTION

In this paper, we focus on analyzing the behavior of a semidiscrete approxima-
tion for a system of heat equations with nonlinear boundary conditions:
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(ut(x,t) = Upz (T, 1), V(1) = Vpp(T, 1),

wi(2,1) = wee (2,1), ye(2,1) = you(w,t),  (2,1) € (0,1) x (0,7),
—u(0,t) = (uv®)(0,1), —v,(0,1) = (vP2w®)(0,1),

—wz(0,1) = (wy™)(0,1), —yz(0,1) = (y™u?)(0,t), t € (0,T),
up(1,1) = (uv®)(1,1),  wva(1,t) = (W2w®)(1,1),

wa(1,2) = (wPy™)(1,1),  ya(1,t) = (y"u?)(1,1), t€(0,T),
u(z,0) = ug(x), v(z,0) =vo(z),

| w(@,0) = wo(z), y(x,0)=yo(z), z€l0,1],

(1.1)

where constants p;, ¢; > 0 (j = 1,2,3,4) and uo(z), vo(z), wo(x), yo(z) are posi-
tive smooth functions satisfying the compatibility conditions.

Systems of heat equations with nonlinear boundary conditions like come
from chemical reactions, heat transfer, etc., where u, v, w, y represent concen-
trations of chemical reactants, temperatures of materials during heat propagation,
etc.

The existence and uniqueness of local classical solutions to is well known
(see, for example, [5]). Here [0,7) is the maximal time interval on which the
solution exists. The time 7' may be finite or not. When T is infinite, we say that
the solution (u,v,w,y) exists globally. When T is finite, the solution (u, v, w,y)
develops a singularity in finite time, namely

lim sup {{[u(, ) loo + [[0(s )lloo + [l (s 8) oo + [y (- B)lloc} = +o0,

where |[|u(-,t)]|0 = Jax lu(zx,t)]|.

In this case, we say that the solution (u, v, w,y) blows up in finite time, and the
time 7 is called the blow-up time of the solution (u, v, w,y).

Non-simultaneous and simultaneous blow-up for systems of heat equations with
nonlinear boundary conditions have attracted significant attention (see, e.g., [1,
2,6,8]]). Simultaneous blow-up is defined as

lim sup min {[[u(, ) oo, |00 )lloos [l (s ) [oos [y (- )l } = o0
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Non-simultaneous blow-up means that at least j € {1,2,3} components blow up
simultaneously while the others remain bounded up to the blow-up time.

In [[7]], the authors analyzed various blow-up scenarios for system (L.I)). Specif-
ically, they examined cases where only one component blows up, where exactly
two components blow up, and where blow-up may be either simultaneous or non-
simultaneous for any initial data. In particular, they proved that the solution blows
up simultaneously in finite time when one of the following conditions is satisfied:

1— 1

Iy = LBt i g, = ,pr <1 < pyfork =1,2,3, and if
pr—1 py—1

B1>0and 8, > 0 for k = 2,3.

- pr,po,ps,pa < 1and [[om, o > [1oe (1= pn)-

The main objective of this paper is to numerically investigate the behavior of the
semidiscrete approximation of system under these blow-up conditions and
to provide an approximation of the blow-up time. Our work is inspired by the
studies in [3,4] on the numerical approximation of heat equations with nonlinear
boundary conditions, as well as the references cited therein.

We organise this paper as follows: in the next section, we present a semidiscrete
scheme of the problem (I.1I). In the third section, we give some properties con-
cerning our semidiscrete scheme. In the fourth section, under some conditions, we
prove that the solution of the semidiscrete scheme of blows up in finite time.
The criteria to identify simultaneous blow-up are proposed in the fifth section.
In the sixth section, we show the convergence of the solution of the semidiscrete
scheme and the convergence of the blow-up times to the theoretical one when the
mesh size goes to zero. Finally, in the last section, we present some numerical
experiments.

2. SEMIDISCRETE PROBLEM

Let [ > 2 be a positive integer and define the grid z; = (i — 1)h, ¢t = 1,...,1,

1
where h = T 1 is the mesh parameter. Approximate the solution (u,v,w,y)

of the problem (1) by the solution (U,(t) = (Ui(t),...,Ur(t)", Vi(t) = (Vi(t),
U ‘G(t))T? Wh(t) = (Wl<t>7 SRR Wf(t>>T7 Yh(t) = (}/i(t)v s 7}/}(t))T) and apprOXi_
mate the initial data (u, vo, wo, yo) of the same problem by (1, = (p11,.--,¢1.1)7,
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won = (P21, 020)", wan = (@31, 030)" pan = (a1, -, par)") of the fol-
lowing system of ODEs which is obtained using the finite difference method

(2.1) Ult) = 8*Ui(t) + w; (UPVEY (), i=1,...,1,t€][0,Ty),

(2.2) VI (t) = 82Vi(t) + w; (VPPWEY (), i=1,...,1, t€[0,T}),

2.3) W) = Wilt) +w; (WPYS) (1), i=1,....1, t€[0,Ty),
(2.4) Y/ (t) = 0?Yi(t) + w; (YU (1), i=1,...,1, t €[0,Ty),

(25)Uz<0) = ©1,iy ‘/1(0) = ©2., VVZ(O) = ©3,i, Y;(O) = P4, = 1, c. ,I,
where

P1, P2, P3, P4, 41, 42, 43, qa Z 07 Py P2,y P34y P > 07 1= 17' o 717

UZ’fl(t) - 2Uz<t> + Ui+1<t)

S2U(t) = 3 ,2<i<I—1,t€(0,T}),
2U5(t) — 2U4 (1) 2074 (t) — 2U;(t)
62U1( ) 2 B2 - ) 62U1<t) = = L2 ! ) L e [OJTh)7
2 . . . .
W) = wy = 7 and w; =0,4i=2,...,1—1.Here [0,7}) is the maximal time

interval on which max {||Up(t) oo, [| Vi () ||oos [|Wa(E)]loos |Yn(t)||oo} is finite, where
|UL(t)]|oo = max |Ui(t)]. When the time 7T}, is finite, we say that the solution

(Un, Vi, Wi, Y3,) blows up in a finite time and the time 7}, is called the blow-up
time of the solution (Uy, Vj,, W, Y) .

3. PROPERTIES OF THE SEMIDISCRETE SCHEME

In this section, we present auxiliary results for the problem (2.1)-(2.5).
Definition 3.1. We define (U, Vi,, Wi, Ys) € (C’l([O,Th),IE\EI))4 as a lower solution
to (2.1)-(2.5) if

Ui(t)
Vi(t)
Wi(t)

IA

CU(t) +wiU (OVE®), i=1,....1, t€(0,Tp),
K( ) +wzzf2(t)w;/]3(t)7 /L = 17 c "‘[7 t E (07 Th»)?
FCWi(t) + w WY #(®), i=1,....1, t € (0,Ty),

N

IA

1
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<
=
IN

SYi(t) +w Y UP (1), i=1,....1,t€(0,Ty),
0<Ui(0) < w15, 0<Vi(0) < oy,
0 < Wi(0) <34, 0<Yi(0) <y, 1=1,...,1,
where (U, Vi, Wy,,Y},) is the solution of (2.1)-(2.5). Similarly, we define (Uy, V;,

Wi, Ys) € (CH([0,T3,),R! ))4 as an upper solution to ([2.1)-(2.5) if these inequalities
are reversed.

The following lemma provides a semidiscrete version of the maximum principle.

Lemma 3.1. Let ey, c, an, By Ay Yo s i € C°([0,T3), RY) and Uy, Vi, Wy, Yy €
C*([0,Ty), R?) such that

Uj(t) — 6°Ui(t) — e()Us(t) — ci(t)V;(t) =0, i=1,...,1, t € (0,T),
Vi (t) = 8°Vi(t) — ci(t)Vi(t) = Bi(t)Wi(t) > 0, i=1,...,1, t € (0,T),
Wi(t) = 82Wi(t) = N(O)Wilt) —v(t)Yi(t) >0, i=1,...,1, t € (0,Tp),

Y/ (t) = 0*Yi(t) — ps(0)Yi(t) = m(O)Us() > 0, i=1,....1, t € (0,Ty),

U;(0) >0, V;(O)>O W(0)>O, YZ»(O)ZO, i=1,...,1.

Then, it follows that
Ui(t) >0, Vi(t) >0, Wi(t) >0, Y;(t) >0, i=1,...,1, t €[0,Th).

)
PT’OOf Let T() < Th and let (Nh(t), Mh(t), Kh(t), Lh(t)) = (eutUh(t), ”ch( )
e"'W,(t), €'Y} (t)) where v is a real. We find that (N, (), My(t), Kx(t), Ln(t)) satis-
fies the following inequalities : fori =1,...,1, t € (0,7},)

(3.1) N(t) — 8 Ni(t) — (ei(t) + v)Ny(t) — c;(t) M;(t) > 0,
(3.2) M;(t) = 6" M;(t) — (cu(t) + v)Mi(t) — Bi(t)Ki(t) > 0,
(3.3) Ki(t) = 0 Ki(t) = (\i(t) + ») Ki(t) = 7(t) La(t) > 0,
(3.4) Li(t) = 0" Li(t) — (pa(t) +v) Li(t) — mi(t) Ni(t) > 0,

(3.5) N;(0) >0, M;(0) >0, K;(0) >0, L;(0) > 0.
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Let
m = min { min  N;(%), min  M;(t),
1<i<I, te[0,Tp] 1<i<I, te[0,Tp]
min  K;(t), min  L;(t) }
1<i<I, t€[0,Tp] 1<i<1, t€[0,Tp)
Since fori € {1,...,1}, N;, M;, K; and L; arecontinuous functions on a compact,
we can assume that m = N, (t;,), for a certain i, € {1,...,I}. Assume m < 0 and

v < 0 such that:
(eio(tio) + V) < 07 (Oéio(tio) + V) < 07 (Ai0<ti0) + I/) <0 and (ﬂio(tio) + V) <0.

If t;, = 0, then N;,(0) < 0, which contradicts (3.5), hence ¢;, # 0; if 1 < iy < I, we
have

N’ (t' ) lim Nio(tio) — Nio (tio — k)
20 \ 7

<0 and 52Ni0(ti0) > 0.
k—0 k

Moreover through direct computation, we obtain the following results
Ni/o (tio) - (52Ni0 (tio) - <€i0 (tio) + I/)Nio (tio) — Cig (ti0>Mio (tio) < 07

but this inequality contradicts (3.1) which completes proof. O

Lemma 3.2. Let (Uy, Vi, W, Ya), (Up, Vi, Wi, Y3,) € (C([0,T3),RT))" be lower and

) ) )
upper solutions of ([2.1)-(2.5)) respectively such that, (U,(0), V,4(0), Wi (0), ¥4(0)) <
(Tn(0), Va(0), Wi(0), Y4(0)), then

(Un(t), Vi (t), Wi (t), Ya(t)) < (Un(t), Va(t), Wa(t), Ya())-

Proof. Let us define

(F3(1), G(t), L (t), Ha(t)) = (Un(t), Valt), Wa(t), Ya(t) = (Un(t), Va(t), Wi (1), Ya(#))-
By straightforward computations and applying the Mean Value Theorem, we ob-
tainfori=1,...,1I:
(3.6) Fi(t) = 8*Fi(t) — proi Vi (8) (&) Fi(t)

—aqwi U7 (8)(pi(1)) ™ Gi(t) = 0
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(3.7) Gi(t) = 0°Gi(t) — pawi W (8) (pi(t) )21 Gi(t)
—qswi V7 (8)(0i(1)) ™ 1L (1) =0,

(3.8) Li(t) = 8 Li(t) — paw,Y " (1) (0 ( )P Li(t)
—qu W () (X)) Hi(t) >

3.9) H(t) = 8 H(t) — pawiU7' (¢ )( ()" Hi(t)
—qwiY 7 (1)(&(0))" T Fi() > 0,

(3.10) F;(0) >0, G;(0) >0, L;(0) >0, Hi(t) >0,

where &(t), pi(t), 0i(t) and ) () lie, respectively, between U;(t) and U (), between
V;(t) and V;(t), between W;(t) and W;(t) and between Y;(t) and Y;(t), for i €
{1,...,1}.

We can rewrite (3.6)-(3.10) as

Fl(t) — 8*Fy(t) — ei(t)Fi(t) — c;()Gyi(t) >0, i=1,...,1, t € (0,T3),
Gl(t) — 82Gy(t) — 6:(1)Gi(t) — Bi()Ly(t) =0, i=1,....1, t € (0,Tp),
Li(t) — 82Li(t) — 0:(8) Li(t) — %()Hy(¢) > 0, i=1,....1, t € (0,T}),
H!(t) — 62H,(t) — () Hi(t) — () Fi(t) >0, i=1,....1, t € (0,T}),

Bi(t) = qawiV7* (1) (0i(1) =, 0 ( ) = psw,Y7 () (0i()P*
(8) = quoWP () () i) = paws U5 (1) (a6,

) = quiYP () (&) fori=1,...,1,Vt € (0,T}).
According to Lemma(3.1} F;(¢) > 0, G;(t) > 0, L;(t) > 0, H;(t) > 0,fori=1,...,1,
Vt € (0,T}). This concludes the proof. The lemma below reveals the positivity of
the solution of the semidiscrete problem. O

Lemma 3.3. Let (Uy, Vi, Wy, Y3,) € (CH([0, Th),RI))4 be the solution of (2.1)-(2.5)
with an initial data (1 p, P21, P34, Pan) lower solution such that 0 < ¢1; < @111,
0 <2 < @ait1, 0 <3 <@z and 0 < pg; < @i, fori=1,...,1—1
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Then, it follows that
(Uz(t)am(t)am(t)ay;(t)) 2 (901,%302@7803,1'7904,1')7 1= 1a"'7[7 t e (OaTh)

Proof. As (1.1, 021, @34, Pap) is @ lower solution of (2.1)-(2.5), it follows from
Lemma that (Ul<t)7 ‘/;(t)u Wz(t)7 K(t>> Z (%01,1'7 ¥2,ir P3,is 904,1') > O: = 17 ceey [1
t € (0,Ty). O

The lemma below shows that the solution of the semidiscrete problem is in-
creasing in space.

Lemma 3.4. Let (Uy, V},, Wy, Y}) € (Cl([O, Th), RI))4 be the solution of (2.1)-(2.5).
Then we have

(Ui (t), Vigr (t), Wiga (1), Yiga (t)) > (Us(t), Vi(t), Wi(t), Yi(t)),
i=1,....I—1te (0,Ty).

Proof. We argue by contradiction. Assume that ¢, is the first ¢ > 0, such that
(R, F, Si, Ki)(t) = (Uis1 — Uy, Vigr = Vi, Win = W3, Y = Yi)(t) > 0, for 1 <4 <
I — 1, but R;,(ty) = Uiys1(to) — Uiy (to) = 0 or Fj, (o) = Vigr1(to) — Viy(to) = 0 or
Sio(to) = Wigs1(to) — Wiy (to) = 0 or K, (to) = Yig+1(to) — Yi,(to) = 0, for a certain
ip € {1,...,I —1}. Assume that R; (ty) = U;,+1(to) — Uy, (to) = 0. Without lost of
generality, we can suppose that i, is the smallest integer which satisfies the above
equality. We get

Ry (t) —

(311) R;(t) . Ri—l—l(t) B

Ry () - PSR R v <o

According to the hypotheses on ¢, we have the following inequalities:

R, (to) = lim Riy (to) — Ry (to — €)

e—0 €

<0,
Rig1(to) — 2Ry, (to) + Riy—1(to)
hQ

Riy1(to) — 3R;, (to)
h2

6 R;,(to) = >0,if 2<iy<I—2,

52Ri0(t0) = > 0, if 190 = 1,
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—3Riy(to) + Rip—1(to)

(SZRZ'O (to) = h2

>0, leOII—l,
which implies
Rgo(t()) — 52Ri0(t0> < 0, if 2< 1o < I —2,

2
R; (to) — 6 Ry (to) — 7 (UPH(t)VE() <0, if dig=1,

2 .
R; (to) — 6° Ry, (to) — m (UPH )V () <0, if dg=1—1.
Thus, we have a contradiction with (3.11)), which leads to the desired result. [

The lemma below shows that the solution of the semidiscrete problem is in-
creasing in time.

Lemma 3.5. Let (U, V,,, Wy, Y3) € (CY([0,T5), IRI))4 be the solution of (2.1)-(2.5).
Then we have (U/(t), V/(t), W/(t),Y/(t)) >0,i=1,...,1, t € (0,T}).

Proof. Let us define

(Fu(t), Gr(t), Ln(t), Hu(t)) = (Un(t), Vi(t), Wi(t), Ya(t))
— (Uh(t+5),Vh(t+e),Wh(t+5),Yh(t+s)).

Using straightforward computations and the Mean Value Theorem, we obtain the
following fori =1,...,1

Fi(t) — 0 Fi(t) — pui V2 (0) (&))" T Fi(t) — qewiUf (t + ) (pi(t)) ™' Gi(t) = 0,

Gi(t) = 0*Git) — pawi Wi (£) (pi(1))™ 7 Gi(t) — qswi Vi (t + €) (i)™~ La(t) > 0,
Li(t) = 6°Li(t) — pawiY;" () (0s(£)7* ' Lit) — quei WP (¢ + ) (Mi(#)) ™ Hit) > 0,
Hi(t) = 0° Hi(t) — paw; U () (Na(0)"* ™ Hi(t) — queoi Y ( + ) (&(1)) ™ T Fi(t) > 0,

where (), pi(t), 0;(t) and \;(t) lie, respectively, between U;(¢) and U;(t + ¢),
between V;(¢) and V;(t + ¢), between W;(t) and W;(t + ¢) and between Y;(¢) and
Yi(t+¢), forie{l,...,I}.
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From Lemma [3.1| we get,

F(t) >0, Gi(t)>0, Li{t)>0, Hi(t)>0, i=1,....1, Vte (0,Tp).

This concludes the proof. O

4. SEMIDISCRETE BLOW-UP SOLUTION

In this section, under certain assumptions, we provide the conditions for the
global existence of the solution of the semidiscrete problem, and we also show that
this solution (Uy,, Vi, Wh, Y3,) of (2.1)—(2.5]) blows up in finite time. We characterize
the blow-up or global existence of the solution (Uy, Vi, Wy, Ys) of (2.1)-(2.5) in
terms of the matrix B where

pr g2 0 O
_ {0 P2 O
0 0 p3s @
@1 0 0 p4
For convenience, we define py,, = p, and q4;4 = q., for all integers a. Let
(o, g, iz, ) be the solution of
P1— 1 q2 0 0 (05} —1
0 -1 0 o -1
4.1) D2 qs 2| _
0 0 ps—1 q o —1
¢ 0 0 ps—1 Qy -1

where for j = 1,2, 3,4,
i+3 j+2 +3 i+3
o — H?;jﬂ (o — 1) + (pjss — 1) H?:_]'Jrl dr — 4j+1 H?;jm (o —1) — Hi;:jJrl Ik
i = 1 1 :
szl 4k — Hk:1 (1—pk)

If0 <p; <1andg; >0, itis easy to check that the numerator of «; is negative for
j=1,234.

Definition 4.1. We say that the solution (Uy, Vy,, Wy, Y3,) of (2.1)—-(2.5) blows up in
finite time if there exists a finite time T}, > 0 such that, for t € [0,T}),

max {[[Un(t) oo, [IVA(8)lloos [[Wh(E)lloo, [Ya(D)]loc} < 00
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and
i sup (UMDl + VA0 o+ IV ()]s + ¥ (0|} = +o0

The time T}, is called the blow-up time of the solution (Uy, V,, Wy, Yy,).

Theorem 4.1. If py, p2, p3, ps > 1, then the solution (U, Vi, W, Ys) of (2.1)-(2.5)
blows up in finite time T},.

Proof. Assume that p; > 1 and let us consider

2U;_4(t) — 2U;(t 2
vy = 202200 B, ve T
As Vi(t) > 112121[ w2, =a >0, fort e [0,7},), then
2Ur_(t) — 2U;(t 2a%
Uit > 20l = 2000 20y 0,1,

h? h
as U;_1(t) < Us(t) (Lemma [3.4) and Uj(¢t) > 0 (Lemma [3.5) for all ¢ € (0,T},),
there exists a constant C' > 0 such that

, 2a%2 -
Ui(t) > SR, te[0.Th).

. rC :
By setting § = squ e obtain

4.2) vt e [0,Th), M@Z%W%»

Thus, U, blows up in finite time 7}, and moreover, integrating (4.2) from 0 to 7},

we can show that .
- Bllewsllis™

T,
= p1—1

Similarly, we can show:

- if p, > 1, V}, blows up in finite time 7}, with
1—p2
< Blieaalls
p2—1
- if p3 > 1, W}, blows up in finite time 7}, with

T,

bl

_ Bllesallis™

T
= p3—1
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- if p; > 1, Y}, blows up in finite time 7}, with
< 5”%04,111\33’4.
ps—1
Thus, if p1, p2, p3, ps > 1, the solution (Uy, Vj,, Wy, Ys) of (2.1)-(2.5) blows up in
finite time 7T}, with

Th</8mjn{‘|gplvh”é<:p1 ”S@,h”clxjp? ”903,h‘|;p3 H%,M!igm}
) pp=1 " pp—1 " ps—1 " pi—1

T,

O

Theorem 4.2. Assume that 0 < p; < 1, for j = 1,2,3,4. Let (a3, s, a3, ) be the
solution of (4.1)), then
(b) if miny<j<4 a; > 0, the solution (Uy, Vi, Wy, Y}) of @.1)-(2.5) is global.
(¢) if minj<j<q4 a; < 0, the solution (U, Vi,, Wy, Y3) of (2.1)-(2.5) blows up in a
finite time T},

The following lemma describes the behavior of the positive solutions of
Z(s) = 7}’ (s) 2} (),
(4.3) Zi(0)=¢j; >0, i=1,...,1, j=1,23/4,
Zs = Zn, 4 =q1.
where 0 <p; <1, ¢; > 0.
Lemma 4.1. Let {Z;(s)} be a positive solution of (4.3) with B nonsingular and
(a1, g, ag, ayy) the solution of (4.1)).
(1) If miny<j<4 o; > 0, then (4.3) has a global upper solution of the form Z;(s) =

M, (s + s9)*, where M; > 0 is a constant.
(i) If miny<;<4 o; < 0, then all positive solution of (4.3) blow up.

Proof. See [9]1, Theorem 2.1. O

Proof. (Theorem 4.2.) Assume that 0 < p; < 1, for j = 1,2,3,4. To prove The-
orem [4.2], we construct a lower or upper solution of (2.1)-(2.5). The solution
either blows up in finite time or exists globally. This is followed by applying the
comparison result (Lemma 3.2)).

Let b : [0,7,) — R be a continuous, bounded, strictly increasing, and strictly
positive function. We denote s = b(t) for a given value of ¢ and s, = b(0) to
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represent the initial value of b at ¢ = 0. This function plays a key role in the
following development where it is defined depending on the context.

Case (b): We now demonstrate the global existence of the solution of (2.I)-
(2.5) by successively constructing upper solution. Let (Uy, V3, W, Y},) be an upper

solution of (2.1)-(2.5).

To construct an upper solution, we propose the following forms: U;(t) = ¢, (b(t)),
Vi(t) = ¢2 (b(t)), Wi(t) = 65 (b(t)) and Yi(t) = ¢4 (b(t)) , fori =1,.... 1, t € (0, Ty),
then

(t) = V() (1), VI(t) =b()ey (b(t) Wi(t) =V(t)df (b(t)),

Zl(s) = (Z;(s))" (Zj41(s))5H
o 1(5) = (25 (Zya(s)
Zj(()):ng’i>O, ’izl,...,l, 71 =1,2,3,4,
where Z5 = 7, and ¢5 = ¢;.
Using the results established in Lemmal4.1], it follows that ¢;(s) = M; (s + so)™ (j =
1,2,3,4) is a global upper solution of (4.4), because min;<;<4 «; > 0. Thus

¢ (b(t)) = (1 (b(1)"" (@2 (b(1)))™ , T € (0, Th),

@5 (b(t)) = (2 (b(£)))™ (3 (b(£))" , T € (0, Th),

&3 (b(t)) = (03 (b(t)))™ (¢4 (b(2)))™, £ € (0,Th),

&y (1)) = (64 (b()))™ (1 (b(2)))™ , £ € (0,Th),

01(0) =2 ¢ii, $2(0) =25, ¢3(0) 2035, ¢4(0) = pus, 1=1,..., 1.

Let b(t) be a function such that ¥/(¢) > w;, fori =1,... I, then

@5) VO bE) = V) (6 GO (62 GO)®, t € (0,T3),

4.6) (B, (b)) = V() (62 ()™ (8 BO)™, t € (0,T),

(4.7) V(1) (b(t)) = V(1) (63 (b(1))™ (¢4 (b(1))™, t € (0,T}),

(4.8) V()¢ (b(t)) = V'(t) (o (b()))™ (61 (b(1)", t € (0,Th),

(4.9) $1(0) = p1i, 02(0) =25 93(0) = w35, 94(0) = puy,
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we can easily observe that

(4.10) ¢; (b(0)) > ¢, (0), j=1,2,3,4,

using (4.5)-(.10), we deduce that, fori =1,...,1,
Ui(t) > YU 0V () 2wl (V" (1), t € (0,Ty),
VI(t) = VOV OWE () 2 w Vi (W), t e (0,Th),
Wit) = VOW Y () 2 WY (1), t € (0,Th),
YI(t) = VO OU" () 2w Y (0T (1), t € (0,Th),
Ui(0) > ou, Vil0) = 0o, Wil0) > @34, Yi(0) > us

T > &Ti(t) +wT (V" (¢), t € (0,Ty),
Vi) > 0i(t) + WV OWR (), te (0,T),
() > W)+ wW OV (), L€ (0,Ty),
Vi) > 8Yi(t) +w Y OT" (1), t € (0,Th),
T(0) > U,(0), Vi(0) > Vi(0), Wi(0) = Wi(0), Y:(0) > Y;(0).

From lemma we conclude that (U, Vj,, W,,,Y,) is an upper solution of (2.1)-
(2.5), hence the global existence of the solution of (2.1)-(2.5).

Case (c): Let (Up, Vi, W3, Ys) be a lower solution of (2.1)-(2.5). We propose

Ui(t) = o1 (b(2)), Vi(t) = 2 (b(2)), Wi(t) = o5 (b(t)) and Yi(t) = ¢4 (b(t)), for
i=1,...,1, t€(0,T}), then,

Ui(t) = b(6)er (0(1), Vi) =0 (), (b(t)), Wilt) =) (b(t)),
Yi(t) = V(t)ey (b(1)) .

=w;, fori=1,...,I. Thus V'(t) = ¢ < wj,

S

Denote s = b(t) = et where 0 < ¢ <
fori=1,...,1.
Let ¢;(s) (j = 1,2,3,4) be a solution of the O.D.E. system (4.4), hence
@1 (b(1)) = (1 (b(1)" (62 (b(1)))™, L € (0, T}),
&y (b(1)) = (2 (b(1)))™ (65 (b(1)))™ , L € (0, T}),
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o5 (b(t)) = (d3(b(t))” (64 (b(1)))™, t € (0,Th),
@y (b(t)) = (Pa(b(t))™ (&1 (b(1)))™, t € (0,Th),
01(0) = wii $2(0) =w2i, 3(0) = w34, G4 (0) = u, i=1,...,1,

which implies that,

V()1 (b(t) = V'(t) (61 (b(1))" (92 (b(¢)))™, t € (0,Th),
V(t)g (b(t) = V'(t) (62 (b(1)))™ (5 (b(¢)))" . t € (0,Th),
V'(t)es (b(t) = V(1) (o3 (b(1))™ (¢4 (b(t))™, t € (0,Th),
V() (b(t) = V(1) (¢a (b(t))™ (61 (b)), t € (0,Th),
$1(0) = w15, 02(0) =i, 3(0) =35 01(0) =pa;, 1=1,....1,

which implies that, fori =1,...,1

Ui(t) = YOUM V() <w UM ()Vi* (1), t € (0,Th),

Vi(t) = V(OViP(OWis(t) < w Vi (Wi (1), t € (0,Th),
() = VOWP )Y, (t) < oW (Y (t), t € (0,Th),

Y/(t) = VO OUS () <w Y (0T (¢), t € (0,Ty),
i(0) = @i Vi(0) = paq, Wil0) = 3, Yi(0) = ¢u;

Uj(t) < 0°Us(t) + w U (1) Vi (t), t € (0,Th),
VI(t) < 8VAlt) +wiVi (Wit (t), t € (0,T),
() < SPWilt) +wiW (Y™ (1), t € (0,Th),
/() < Yi(t) +wYi" (U (t), t € (0,Th),
i((0) < Ui(0), Vi(0) < V;(0), Wi(0) < W;(0), Y;5(0) < Yi(0).

From Lemma we conclude that (Uy, Vi, W4, Y,) is a lower solution of (2.1)-
(2.5). Asmin;<j<4a; < 0, by the Lemma4.1] ¢;(s) (j = 1,2, 3,4) blows up in finite
time, thus (U, Vi, Wi, Y},) blows up and hence (U, Vi, W), Ys) cannot be global.
This ends the proof. O
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Remark 4.1. By multiplying the inequality by the inverse of Ut'(t) and by
integrating the result obtained on [t, T},], we obtain, Vt € (0,T},),
1 1
pL—1UP (1)

and there exists a constant C,, such that

ZV(Th_t)»

Ur(t) < Cp (Ty —t) 71, Wt e (0,Th),

for py > 1. In the same way we show, if p, > 1, there exists a constant C,, such that
Vilt) € Gy (Th =) %7, VE€ (0,Th),

if ps > 1, there exists a constant C,, such that
Wi(t) < Oy (Th — ) 51, Vte (0,Th),

and if ps > 1, there exists a constant C,, such that
1
Yi(t) < Cp, (T —t) Pr— 1 vt e (0,T)).

Theorem [4.1] and Theorem [4.2] imply the following corollaries:

Corollary 4.1. The solutions of (2.1)—-(2.5) blow up in finite time T}, if

4 4
max{pj—l (1 =1,2,3,4), qu—H(l—pj)} > 0.

=1 =1

Corollary 4.2. If

4 4
j=1 Jj=

max{pj—l(j:1,2,3,4),qu— (1—pj)}§0,

1

then, the solutions of (2.1)—(2.5) exist globally.

5. SIMULTANEOUS BLOW-UP

In this section, we consider (U, V},, W), Y},) as a positive solution of (2.1)—(2.5)
with & fixed, and we provide sufficient conditions for the existence of simultaneous
blow-up for all initial data.
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Definition 5.1. We say that the solution (U, Vj,, W, Ys) of (2.1)-(2.5) blows up
simultaneously in a finite time if there exists a finite time 1), > 0 such that for
t € [0,Th), max {[|Un(t)lloc, IVa(@)lloo, [Wh(E)lloos [ Ya(E) ][} < 00 and

Ji sup min {{|Un(8) oo, [1Va () lloo, [IWa () lloo, [Ya(E) oo} = +o0-

The time T}, is called the simultaneous blow-up time of the solution (U, Vi, Wy, Yy,).

1 1—

Theorem 5.1. Define 3, = T If B, = Lflﬂ“, o < 1<pys(k=1,23)
Ps — Pr —

and 8, > 0, B > 0, (k = 2,3), then Uy, Vj,, Wy, Y}, blow up simultaneously in a

finite time T},.

Proof. This proof is divided into three steps.

Step 1. Y, blows up in a finite time 7}, and Y;(t) > ¢, (T, —t) ™. We claim
that Y}, is the blow-up component. If not, the other components would remain
bounded for p, < 1 (k = 1,2,3), which leads to a contradiction, since p, > 1.
Consequently Y}, blows up in 7},. From (2.4), we have

2Y7 4 (t) = 2Y7(t) 2
2V )h2 () +E3/1p4(t)U?1<t>’ t € (0,Th).

Since Y;_(t) < Yi(t), Vt € (0,7,) (Lemma|[3.4), we have

Yi(t)

2
Y/(t) < YPOUR (), Ve (0.T)
since p; < 1, there exists a constant C' > 0 such that U;(t) < C, vVt € (0,T}).
Therefore Y;(¢) satisfies
2
V(1) < SCUYP(D), Ve (0.T))

which implies that
Y/ (t) 2

< —C*T, Vte (0,7
}/}Pé&(t) = B ) 6( ) h)a

integrating this inequality from ¢ to 7},, we obtain

(5.1) Yi(t) > ¢, (Th — )7, Yt e[0,T)),

1

where ¢, = (207 (py — 1)) 77
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Step 2. W, blows up in a finite time 7}, and W;(t) > ¢, (T} — )™ . Assume
that IV, remains bounded up to time 7},. From (2.3) and (5.1)), we have

2Wia(8) = 2w (t) | 2
wit) > - +3

As Wiy (t) < Wi(t), Vvt e (0,7,) (Lemma 3.4) and W; is bounded, then, there
exists a constant B > 0 and a constant C' dependent of & such that

2B
Wit) > —=C™d, (T, — )79 Vit e (to, Th),

WP (et (T, — )™, € (0,Tp).

thus
Wit) > Cy(Th—t)"7" Vit e (to, Th),

with €y = 2ECws cfi. Integrating this inequality from ¢, to T},, we have

Th
WiTh) > Wilte) + Ci / (T — )54 gt

to
For W, to remain bounded, we must have ¢,8; < 1, which implies 53 < 0. This
contradicts the assumption g3 > 0.

From (2.3) and (5.1)), we have
QW4 (t) —2Wy(t) = 2 _
= + WP ()ep (T — 1) Paas e (0,Ty).
As Wi_q(t) < Wi(t), ¥t € (0,7,) (Lemma [3.3), then, there exists a constant
C' > 0 such that

Wi(t) >

2C _
Witt) > S-WP (e (T — 1) Pus it e (tg, Th).
Integrating the above inequality from z to ¢, we obtain
> 2¢ q4 ' P3 —B4ga
Wi(t) > - Cos W (r) (Th, — 1) dr, Vte (z,T).

Define H(t) = [ WP (r) (Tj, — )" dr, then W, (t)H'(t) = (Ty — 1)
Since

(5.2) Wi(t) > —ch4H(t), Vt € (z,1h),
then

HPOH' () > Q(Th—1t) ™, Vie (2T,
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where ) = (%cgi)p ° . Integrating the above inequality from z to ¢ and taking

2z = 2t — T},, we have

(5.3) HYP () > (1—pg) K (T, — )" vt e (0,T)),

_ 2lmubi Q
where K = Tabs — e From (5.2)), we deduce that

20 1—ps
(5.4) W}’”(t) > <Tcgi) HYPs(t), Vte (0,Ty).
Using (5.3)) et (5.4), we obtain
20  \'P
Wllipg(t> 2 K (TCZi) (1 —pg) (Th — t)l_q4ﬂ4 y \V/t € (O, Th);

and hence

Wit) > cp (Th—1)", Vte (0,T),

where ¢,, = (K (ECQ4)1_7’3 (1-— p3)> e

h “Ppa

Step 3. Similar to Step 2, we obtain that V,, blows up in a finite time 7}, and
Vi(t) > ¢, (Ty, — )7 . For 8, > 0, Uy, also blows up at time T}, similarly. That
means Uy, Vj,, W}, V), blow up simultaneously in a finite time 7}, and the proof is
completed. O

Theorem 5.2. If p1, ps, ps, ps < Land [[,_, gn > [To_y (1 — pn), then Uy, Vi, Wi,
and Y}, blow up simultaneously in a finite time Tj,.

Proof. Assume that Y}, remains bounded up to the blow-up time 7}. Then, U,
Vi, W), would also remain bounded for p;, ps, p3 < 1. However since Hizl Gn >
Hizl (1 — p,), this contradicts corollary 4.1. Therefore Uy, V},, W}, Y, must blow

up simultaneously, and the proof is completed. O

6. CONVERGENCE OF SEMIDISCRETE BLOW-UP TIME

In this section, we study the convergence of the semidiscrete blow-up time.
We now show that, for each time interval [0, 7*] where (u, v, w,y) is defined, the
solution (Uy, V3, Wy, Y3) of (2.1)-(2.5) converges to (u,v,w,y) as the mesh size h
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tends to zero. We denote
wn(t) = (u(wn, 1), u(en )T, o) = (), (e )T
wh<t) = ('LU(SCl, t)v e ,U)(CE[, t))Tv yh(t) = (y(xlv t)v see 7y(x17 t))T

Theorem 6.1. Assume that the problem (1.1)) has solution (u,v,w,y) € (C*'([0, 1] x
[0, 7%]))* and the initial data (p1 1, 2.0, P34, Pan) of @-I)-(25) satisfies

(6.1) [1n = un(0)]lec = 0(1),  [l2n = va(0)]lc = 0(1),

lsn — wi(0)]loo = o(1),  [lan = yn(0)]|oc = o(1), h—0.

Then, for h sufficiently small, the problem (2.1)-(2.5) has a unique solution (Uy, Vj,
W, V) € (CH([0, T*], RT))* such that,

Un(t) = un(t)lloc = O(Ilcm,h = un(0)lloo + [lp2.n = va(0)]oo

max
te[0,77]

+ s = 0Ol + lloan = 11 (O]l + 1),

Vi(t) = on()]loe = O<Hs01,h = un(0)lloo + [lp2,n = va(0)]oo

max
te€[0,7%]

+ e = wn(0) o + llpan = ya(0) o + B).

s [[Wa(0) = w(t) e = O Jlonn = un(O)ll + lpan = va(0)

+ lpsn = wn(0) oo + liean = 91 ()l + %))
masc [[Va(t) = 4n(O)lloe = O(lle1 = un(0) oo + 2 = 1(0)]l
te[0,T*]

+ e = wn(0) 1o + lpan = 9 (0}l + 1?).

Proof. Let v > 0 be such that

(6.2) (lullsos 0lloos llwlloc, 1yllse) < v, € [0,T7].

Let t(h) < T* be the greatest value of ¢ > 0 such that for ¢ € (0,t(h))
maX{ 1U(t) = un(t) oo, [[Va(t) = 0h(t)]]so,

6.3) IWa(t) = wn(®)llcs 1V3(8) = yh(®)llc | < 1.
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The relation implies ¢(h) > 0, for h small enough. Using the triangle inequal-
ity, we obtain

(6.4) [Un)loe < 14w, [[Va(®)llee <1+,

Wi (D)]loe <1+ vand |Ya(t)]|lw <1+, fort € (0,t(h)).

Let <€l,i7€2,i7€3,i7€4,i)<t> - (UZ — Uy, ‘/; — U, Wz - wi7)/i - yl)(t)a for 7/ - 17 o 7-[)
Vt € [0, 7] be the discretization error. These error functions verify

e1,4(t) = 0%e1i(t) + prwi(a ()" TV (B)ers(t) + qawi(Bi (1) 2} (Beai(t) + O(R?),
€,4(t) = 0%eai(t) + pawi(B;(8))P* T W (t)ezi(t) + qawi(Ni(1)) ™ 02 (t)esi(t) + O(h?),
€5 (t) = 0%es,:(t) + pswi(Ni(8))2 Y (H)esi (1) + qawi(0i(1) "~ wi® (t)eas(t) + O(R?),
€hi(t) = 0%eai(t) + pawi(0:(1))" U ()eai(t) + quuieu(t) ™~y (Hera(t) + O(h?),

where «;(t), B;(t), \i(t) and 6;(t) lie, respectively, between U;(t) and w;(t), be-
tween V;(t) and v;(t), between W;(t) and w;(t) and between Y;(¢) and y;(t), for
i =1,...,1. Using (6.2) and (6.4), there exist J and K positive constants such
that

e'lvi(t) S6261Z(t)+wzJ|eU(t)|—I—wzJ|egz(t)|+Kh2, i=1,....I, tel0,T7],
e;,i(t) < 52627i(t)+wiJ|egl(t)| +wZJ|632(t)|+Kh2, i=1,....I, tel0,T7],
e5,(t) < 0%esi(t) + widles; ()] + widleas(t)| + Kh*, i=1,...,1, t€[0,T"],

€yi(t) < 0%eqi(t) + widlea(t)| + widler;(t)| + Kh?, i=1,....1, te[0,T7].
Let (M, N,Q, H) € (C*([0, L], [0, T*]))" be such that
M(z,t) = (lern = un(0)]loo + lp2.n — v1(0)llsc + [0z — wa(0)]l
+ oan = yn(0)[loo + KRZ)eFHIED

and M = N =Q = H,V(z,t) € [0,1] x [0,T*], with K, F and D positive constants.
By the Lemma we can prove that

(lens(®)]; le2s(B)]; less (D), leas(t)]) < (M(xs, 1), N(2i,t), Qi 1), H(ws, 1)),

with 1 <¢ <[, fort € (0,t(h)). Thus we get
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10n() = un@llse < (lorn = un(0) oo + 220 = o0 (0)

s — wn(0) o + llan — 91(0) o + K2) eFH9D,
IVa(t) = on®)lle < (10 = wn(0) oo + 22 = v (0) 1

+ lesn = wn(O)lloe + 915 — 1(0) oo + K2 ) P+,
IWa(t) = wn(®lloe < (Ilorn = un(O)lloe + e2 — 01(0)

+ losn = wn(0) oo + lioan — 9n(0) o + K2 ) 7+,
1 (t) = )l < (o1 = un(0) oo + 2.0 = v (0) 1

e = wn(0) oo + lpan — 9 (0) oo + KAZ) elF 90D,

where ¢ € (0,¢(h)). Suppose that 7* > ¢(h). From (6.3]), we obtain

1 = |Un(h) = un(t(h))lloo < (Io1n — un(0)]lsc + llo2,n — vn(0)loc
+ lesn = wn(0)lloo + loan = yn(0)[loo + KAZ)IHITTHD,

Since the term on the right hand side of the above inequality goes to zero as h
tends to zero, we deduce that 1 < 0, which is impossible. Consequently ¢(h) = T*
and we conclude the proof. O

Theorem 6.2. Suppose that the solution (u,v,w,y) of problem (L.1) blows up in
a finite time T such that (u,v,w,y) € (C*([0,1] x [0,7)))* and the initial data at
(2.1)—-(2.5) satisfies
lern = un(0)floo = 0(1), Iz = vr(0)[loc = o(1),
lesn = wn(0)]loo = 0(1),  llan = Yn(0)lloc = 0(1), h —0.

Under the assumptions of corollary the solution (U, Vi, Wy, Y,) of problem
(2.1)—(2.5) blows up in finite time T}, and we have

h—0

Proof. Set > 0, there exists a constant x > 0 such that
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1-p1
Y < H

Y1) 7 2
Since u blows up in a finite time 7', there exists a time 7Ty € (7' — p/2; T) such that
Ju(.,t)||oe > 2k, for t € [Ty, T). Denote Ty = XL, we see easily that

SUPyejo7y [[U(-s ) [loo < o0. It follows from Theorem 6.1 that for & sufficiently small

(6.5) k< y.

sup [|Un(t) = un(t)l|oc < 5
t€[0,T1]

Applying the triangle inequality, we get
1UW(TV)llse 2 [lun(T1)llse = [|UA(T1) = un(T1)[loc = 5

From corollary [4.1], U, blows up at the time 7},. We deduce from Remark [4.1] and
that

U, (T)]||1—pr
Ty —T| <|T), = Th| + [Ty = T| < M%-E < p.
Y(p1 — 1) 2
The cases where V},, W}, and Y}, blow up are analogous. O

7. NUMERICAL EXPERIMENTS

In this section, we provide numerical approximations of the simultaneous blow-
up time of (1.I) using the initial data ug(z) = vo(z) = wo(x) = yo(z) = —3a*+ 322,
with varying values of p; and ¢;, where j = 1, 2, 3, 4. The explicit scheme is defined

as follows:
U(n+1) - U(n) . . N
V(n—l—l) . V(n) . i : _
AL =0Vt (v} )>m <Wz‘( )>q37 i=1,...,1, n>0,

W‘(n+1) —W-(n) " )\ P N &
=W e (W) (V) i1 nz 0,

Y(n-l—l)_y(n) . . . L
#:52n()+%<yj( )>p4<U( ))q, i=1,...,1, n>0,



180
Ui(O) = P14,
where
52 Ui(n)
52U
w1
and
At, = ﬂ min
2

where 7 satisfies

V(O) = P24,
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Wi(o) = ¥3,is Yi(o) = Paiy, 1=100 1

v —out™ + Ul

= = h; ,2<i<I-—1,

UM — 2™ s2p) _ 2U" — 2™

= T YU =T
2 2

- anlzﬁ7wz:072227 7] ]-7

ho oy - - - n) (11—
(T I IO, IO IS w1,

IV I I, Iy o |

il i

0 < 7 < 1. The implicit scheme is also defined as follows:

Uty — gt 0 D\ ()
S = 520! “)+wi<U})>l(Vi”>2, i=1....1,n>0,
V(n+1) . V(") . . .
ZT = 52‘/ +1) +WZ (‘/z( )>p2 <Wz( ))qB, 1= 1,...,], n > 0,
W'(”+1) W.(”)
i ~ i _ 52Wi(n+1) + w; <V[/Z(n)>p3 (Y'i(n)>q4 L i=1,... ’], n>0,
Y(N'H) _ Y(")
= Y (Yj“’)m (UZ.(”))QI, i=1,....1 n>0,
n
Ui(o) = P14, © = ¥2,i5 Wi(o) = P35 Yi(o) =4, t=1,...,1,
where
U'(nJrl) 2U (n+1) + U n+1)
52U7’L+1 — i—1 h2 , 2§Z§I—1,
n+1 n+1 (n+1) n+1)
52U(n+1) _ 2U2( ) 2U1( ) 52U (n+1) _ 2UI 2[]1E
1 - h2 Y h2 )
2 2
Wy = E, :anz:(LZ:Q; .,[—1,
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and
Th . n)l— n)l— n)l— n)l—
At = T min { U PGS, VI,
IR I e 1Y 1 103 1

where 7 satisfies 0 < 7 < 1.

Tables and Graphics: The initial conditions are given as follows:
1 3
D1i = P2i = P3; = Pa; = —§(ih —h)* + 5(z’h —h)? i=1,...,1I
The following tables present the simultaneous numerical blow-up times 7}, the
number of iterations n, the CPU times, and the order s of the approximations for
meshes of I = 16, 32, 64, 128, 256, 512. The simultaneous numerical blow-up
time is defined as: 7}, = > 7, At, < oo. The order s of the method is computed

as:
o = Jog (Tan — Ton)/(Ton — Th))

log(2)
First case: Theorem [5.1]with p; = 0.4, po = 0.5, p3 =05, py =2, ¢ =1, o =
21, 3=15, s =2.

TABLE 1. Explicit Euler method: Results

I Ty, n CPUt S
16 | 0.61764384 | 383 0.20 -
32 10.61223563 | 1447 0.09 -
64 | 0.61058746 | 5658 0.78 1.71

128 | 0.61010181 | 22435 1.88 1.76
256 | 0.60996220 | 89436 3.95 1.80
512 | 0.60992279 | 357265 | 14.046875 | 1.82

TABLE 2. Implicit Euler method: Results

1 1} n CPUt s
16 | 0.61397791 377 0.52 -
32 | 0.61144769 | 1419 0.63 -
64 | 0.61041245 | 5542 7.02 1.29
128 | 0.61006145 | 21960 54.25 1.56
256 | 0.60995262 | 87522 | 8.27e+02 | 1.69
512 | 0.60992047 | 349593 | 2.78e+04 | 1.76
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Second case: Theorem [5.2) with p; = 0.11, p, = 0.51, p3 = 0.1, py = 0.9, ¢ =
L q2:47 q3:27 q4:3

TABLE 3. Explicit Euler method: Results

I Ty n CPUt S
16 | 0.616442447 | 398 0.06 -
32 | 0.611211351 | 1522 0.14 -
64 | 0.609601879 | 5997 0.81 1.70
128 | 0.609125261 | 23867 1.78 1.76

256 | 0.608987812 | 95304 3.88 1.79
512 | 0.608948925 | 380991 | 17.28125 | 1.82

TABLE 4. Implicit Euler method: Results

I Ty n CPUt S
16 | 0.612395007 | 398 0.19 -
32 10.610341231 | 1524 0.47 -
64 | 0.609412625 | 6001 6.33 1.15

128 | 0.609083065 | 23872 66.43 1.49
256 | 0.608978161 | 95310 | 1.02e+03 | 1.65
512 | 0.608946668 | 380998 | 3.47e+04 | 1.74

The following plots compare the explicit and implicit schemes, demonstrating
the simultaneous blow-up behavior of U, V},, W), and Y}, in the case where [ = 64.

First case: Theorem [5.1|with p; = 0.4, po = 0.5; p3 =05, ps =2, ¢1 = 1, @@ =
2.]_, q3 = ]_5, qq = 2.
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Second case: Theorem [5.2) with p; = 0.11, p, = 0.51, p3 = 0.1, py = 0.9, ¢ =
17 q2:47 C]3:27 q4:3
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FIGURE 3. (Explicit scheme): U,, V},, W, and Y} blow up simultaneously.
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FIGURE 4. (Implicit scheme): U,, V},, W}, and Y} blow up simultaneously.

Remark 7.1. By considering problem (2.1)-(2.5) with initial data given by
1. 3. .
Pl = P2,i = P3,i = P4, = —§(Zh — h)4 + §(lh - h)2, 1= 1, R ,I,

- fOT' pP1 = 0.47]?2 = 0.57]?3 = 0.57]94 = 27Q1 = 1,(]2 = 2.1,(]3 = 1.5,(]4 = 2,
satisfying the conditions of Theorem and
- fOT' b1 = 01]—71)2 - 051,])3 = 0-1,174 = 0-9,CI1 = 17(]2 = 47(]3 - 27q4 - 3}

satisfying the conditions of Theorem|[5.2] we obtain in Tables[1} [2} 3} andH]an approx-
imate value of the simultaneous blow-up time, which tends to 0.6, and a convergence
order s that approaches 2 as the mesh size tends to zero. Figures |1|to |4]illustrate the

simultaneous finite-time blow-up of the solution (Uy, V,, W}, Y},) of problem (2.1)-
(2.5), thus validating the theoretical results.

REFERENCES

[1] C. BRANDLE, F. QUIROS, J.D. ROSSI: Non-simultaneous blow-up for a quasilinear parabolic
system with reaction at the boundary, Commun. Pure Appl. Anal. 4 (2005), 523-536.

[2] W.Y. CHEN: The blow-up estimate for heat equations with non-linear boundary conditions,
Appl. Math. Comput. 156 (2004), 355-366.

[3] K. B. EpJA, K. N’GUESSAN, B. J.-C. Koua, K. A. TOURE: Numerical blow-up for heat
equations with coupled nonlinear boundary flues, Far East J. Math. Sci. 117 (2019), 119-138.

[4] K. B. EDJA, K. A. TOURE B. J.-C. KOUA: Numerical Blow-up for a Heat Equation with
Nonlinear Boundary Conditions, Journal of Mathematics Research, 10 (2018), 119-128.

[5] O.A. LADYZENSKAJA, V.A. SOL’ONNIKOV, N.N. URALCEVA: Linear and Quasi-Linear
Equations of Parabolic Type, Amer. Math. Soc. Transl. Ser. 2, 23 (1968), 571-629.



186 K.Z. Lekporo, K.B. Edja, N. Koffi, and K.A. Touré

[6] F.J. L1, B.C. Liu, S.N. ZHENG : Simultaneous and non-simultaneous blow-up for heat
equations with coupled nonlinear boundary flux, Z. Angew. Math. Phys. 58 (2007), 1-19.

[71 B.C. Liu AND F.J. LI: Non-simultaneous blow-up of n components for nonlinear parabolic, J.
Math. Anal. Appl. 356 (2009), 215-231.

[8] M. PEDERSEN, Z.G. LIN: Blow-up analysis for a system of heat equations coupled through a
nonlinear boundary condition, Appl. Math. Lett. 14 (2001), 171-176.

[9] J.D. ROSSI: On the existence and nonexistence in the large for an N-dimensional system of
heat equations with nontrivial coupling at the boundary, New Zealand J. Math. 26 (1997),
275-285.

JOINT RESEARCH AND INNOVATION UNIT IN MATHEMATICS AND DIGITAL SCIENCES
INSTITUT NATIONAL POLYTECHNIQUE HOUPHOUET-BOIGNY YAMOUSSOUKRO BP 2444,
YAMOUSSOUKRO,

COTE D’IVOIRE.

Email address: zanalekporo@gmail.com

DEPARTMENT OF COMPUTER AND DIGITAL SCIENCES
UNIVERSITE VIRTUELLE, 28 BP 536 ABIDJAN 28

ABIDJAN,

COTE D’IVOIRE.

Email address: berengeredja@gmail.com

DEPARTMENT OF ECONOMIC SCIENCES AND MANAGEMENT
UNIVERSITE ALASSANE OUATTARA, 01 BP V 18 BOUAKE 01

BOUAKE,

COTE D’IVOIRE.

Email address: nkrasoft@yahoo.fr

JOINT RESEARCH AND INNOVATION UNIT IN MATHEMATICS AND DIGITAL SCIENCES
INSTITUT NATIONAL POLYTECHNIQUE HOUPHOUET-BOIGNY YAMOUSSOUKRO BP 2444
YAMOUSSOUKRO,

COTE D’IVOIRE.

Email address: latoureci@gmail.com



	1. Introduction
	2. Semidiscrete problem
	3. Properties of the semidiscrete scheme
	4. Semidiscrete blow-up solution
	5.  Simultaneous blow-up
	6. Convergence of semidiscrete blow-up time
	7. Numerical experiments
	References

