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THEORY ON A MULTI-PARAMETER THREE-DIMENSIONAL HARDY-HILBERT
TYPE INTEGRAL INEQUALITY

Christophe Chesneau

ABSTRACT. In 2011, W.T. Sulaiman established an interesting triple integral in-
equality of the Hardy-Hilbert type, which is expressed using a power-absolute-
value-difference kernel function. In this paper, we generalize this inequality by
introducing additional parameters. Some of these parameters activate new com-
ponents and allow for greater adaptability. We provide a rigorous and detailed
proof of this generalized inequality, emphasizing the role of each parameter and
the beta function in determining the upper bound.

1. INTRODUCTION

The classical Hardy-Hilbert integral inequality is a basic result in mathematical
analysis, which allows the study of bivariate integral inequalities. It provides an
upper bound for a double integral involving a singular kernel, i.e., k(x, y) = 1/(x+

y). The inequality establishes a connection between the integrability properties of
two functions and their weighted interaction. Formally, it states that, for any
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p, q > 1 such that 1/p + 1/q = 1 and f, g : [0,+∞) 7→ [0,+∞), i.e., two non-
negative functions defined on [0,+∞), we have∫ +∞

0

∫ +∞

0

f(x)g(y)

x+ y
dxdy ≤ δ

[∫ +∞

0

fp(x)dx

]1/p [∫ +∞

0

gq(x)dx

]1/q
,

where the constant δ is given by

δ =
π

sin(π/p)
.

This inequality holds under the condition that all the integrals involved are finite
(or converge). It is strict unless f and g are both equal to zero. Furthermore, the
constant δ is optimal, meaning that it cannot be improved. For detailed proofs and
discussions, we refer the reader to [10,29].

Since its discovery, the Hardy-Hilbert inequality has been the subject of exten-
sive study, inspiring many generalizations and extensions. These include weighted
versions, discrete analogues and multidimensional forms. Important contributions
to this topic can be found in [1–4,7,9,14,16,19–23,25–28,30,32]. For a compre-
hensive overview of the theory, its refinements, and its wide range of applications,
we recommend the survey paper [6].

A relevant example of a modified Hardy-Hilbert-type integral inequality using a
power-absolute-value-difference kernel function is given below. For any p, q > 1

such that 1/p+ 1/q = 1, s ∈ (0, 1) and f, g : [0,+∞) 7→ [0,+∞), we have∫ +∞

0

∫ +∞

0

f(x)g(y)

|x− y|s
dxdy

≤ ι

[∫ +∞

0

x(1−s/2)p−1fp(x)dx

]1/p [∫ +∞

0

y(1−s/2)q−1gq(x)dx

]1/q
,(1.1)

where the constant ι is given by

ι = 2B
(s
2
, 1− s

)
and B(a, b) is the beta function defined by

B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt =

∫ +∞

0

ta−1

(1 + t)a+b
dt,(1.2)

with a, b > 0. This inequality holds under the condition that all the integrals in-
volved are finite. See, for example, [16, Corollary 3]. This formulation is original
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because it combines a singular kernel, k(x, y) = 1/|x − y|s, with weighted inte-
gral norms in the upper bound involving power-type weight functions. It thus
modifies the structure of the classical Hardy-Hilbert integral inequality and incor-
porates fractional-type singularities, which are important in potential theory and
fractional integral operators. The explicit appearance of the beta function in the
sharp constant further illustrates the complexity of the inequality.

In addition, numerous multivariate variants of the Hardy-Hilbert integral in-
equality have been studied in the literature. We refer to [5, 8, 11–13, 15, 17, 18,
24, 31, 33]. Among these, [17, Theorem 1] is particularly notable as it provides
a natural three-dimensional extension of the inequality in Equation (1.1). More
precisely, it determine a valuable upper bound for the following triple integral:∫ +∞

0

∫ +∞

0

∫ +∞

0

f(x)g(y)h(z)

|x− y − z|s
dxdydz,

where f, g, h : [0,+∞) 7→ [0,+∞) and s is an adjustable parameter. The follow-
ing three-dimensional power-absolute-value-difference kernel is thus considered:
k(x, y, z) = 1/|x−y−z|s. The upper bound is defined as a constant factor resulting
from the repeated application of the beta function, multiplied by the product of
the three weighted integral norms of the functions f , g and h.

The goal of this paper is to extend the theory to a triple integral of the following
form: ∫ +∞

0

∫ +∞

0

∫ +∞

0

xαyβzγ(y + z)σ|x− y|θ|x− z|ξf(x)g(y)h(z)
|x− y − z|s+t+u

dxdydz,

where α, β, γ, σ, θ, ξ, s, t, u, ϵ, λ and ω denote adjustable parameters. We thus con-
sider the three-dimensional power-absolute-value-difference kernel k(x, y, z) =

xαyβzγ(y + z)σ|x − y|θ|x − z|ξ/|x − y − z|s+t+u. This formulation thus extends
the scope of the study in [17] by introducing new weight functions and structural
components, such as xα, yβ, zγ, (y + z)σ, |x − y|θ and |x − z|ξ. The resulting
inequality is more general and adaptable, and can include a wider range of func-
tion interactions. The expression for the constant associated with this inequality is
technically intricate and involves multiple applications of the beta function. It has
been derived to be as sharp as possible within the given parameter framework.
In addition to building on the work of [17], this paper introduces novel proof
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techniques. These methods are of independent interest and can be applied to a
broader class of three-dimensional integral inequalities.

The rest of the paper is organized as follows: Section 2 presents the main theo-
rem together with its proof. Section 3 gives the conclusion.

2. MAIN THEOREM

The statement of our main theorem is formulated below, followed by its detailed
proof.

Theorem 2.1. Let p, q, r > 1 such that 1/p + 1/q + 1/r = 1, f, g, h : [0,+∞) 7→
[0,+∞) be three functions, and α, β, γ, σ, θ, ξ, s, t, u, ϵ, λ, ω ∈ R such that γωp+1 > 0,
1 − sp > 0, (s − γω)p − 1 > 0, 1 − sp > 0, βλp + 1 > 0, 2 − (s − θ − γω)p > 0,
(s − θ − γω − βλ)p − 2 > 0, 2 − (s − θ − γω)p > 0, αϵq + 1 > 0, 1 − tq > 0,
(t− αϵ)q − 1 > 0, 1− tq > 0, γ(1− ω)q + 1 > 0, (t− σ − αϵ− γ(1− ω))q − 2 > 0,
β(1− λ)r + 1 > 0, 1− ur > 0, (u− β(1− λ))r − 1 > 0, 1− ur > 0, α(1− ϵ)r + 1 >

0, 2 − (u − ξ − β(1 − λ))r > 0, (u − ξ − β(1 − λ) − α(1 − ϵ))r − 2 > 0 and
2− (u− ξ − β(1− λ))r > 0.

Then the following inequality holds:∫ +∞

0

∫ +∞

0

∫ +∞

0

xαyβzγ(y + z)σ|x− y|θ|x− z|ξf(x)g(y)h(z)
|x− y − z|s+t+u

dxdydz

≤ℵ
[∫ +∞

0

x(θ−s+γω+βλ)p+2fp(x)dx

]1/p [∫ +∞

0

y(σ−t+αϵ+γ(1−ω))q+2gq(y)dy

]1/q
×
[∫ +∞

0

z(ξ−u+β(1−λ)+α(1−ϵ))r+2hr(z)dz

]1/r
,

where the constant ℵ is given by

ℵ = [B(γωp+ 1, 1− sp) +B((s− γω)p− 1, 1− sp)]
1/p

× [B(βλp+ 1, 2− (s− θ − γω)p) +B((s− θ − γω − βλ)p− 2, 2− (s− θ − γω)p)]
1/p

× [B(αϵq + 1, 1− tq) +B((t− αϵ)q − 1, 1− tq)]
1/q

× [B(γ(1− ω)q + 1, (t− σ − αϵ− γ(1− ω))q − 2)]
1/q

× [B(β(1− λ)r + 1, 1− ur) +B((u− β(1− λ))r − 1, 1− ur)]
1/r

× [B(α(1− ϵ)r + 1, 2− (u− ξ − β(1− λ))r)

+B((u− ξ − β(1− λ)− α(1− ϵ))r − 2, 2− (u− ξ − β(1− λ))r)]
1/r

.(2.1)
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This inequality holds under the condition that all the integrals involved are finite.
We recall that B(a, b) is the standard beta function at a, b > 0 defined in Equation
(1.2).

Proof. An appropriate decomposition of the integrand, followed by the generalized
Hölder integral inequality at p, q and r, yields∫ +∞

0

∫ +∞

0

∫ +∞

0

xαyβzγ(y + z)σ|x− y|θ|x− z|ξf(x)g(y)h(z)
|x− y − z|s+t+u

dxdydz

=

∫ +∞

0

∫ +∞

0

∫ +∞

0

yβλzγω|x− y|θf(x)
|x− y − z|s

× xαϵzγ(1−ω)(y + z)σg(y)

|x− y − z|t
× xα(1−ϵ)yβ(1−λ)|x− z|ξh(z)

|x− y − z|u
dxdydz

≤ I1/pJ1/qK1/r,(2.2)

where

I =

∫ +∞

0

∫ +∞

0

∫ +∞

0

yβλpzγωp|x− y|θpfp(x)

|x− y − z|sp
dxdydz,

J =

∫ +∞

0

∫ +∞

0

∫ +∞

0

xαϵqzγ(1−ω)q(y + z)σqgq(y)

|x− y − z|tq
dxdydz

and

K =

∫ +∞

0

∫ +∞

0

∫ +∞

0

xα(1−ϵ)ryβ(1−λ)r|x− z|ξrhr(z)

|x− y − z|ur
dxdydz.

Let us now majorize the terms I, J and K successively.
We first focus on the term I. It follows from the triangle inequality that, for any

x, y, z > 0,

|x− y − z| ≥ ||x− y| − |z|| = ||x− y| − z| .

Therefore, we have

I ≤ I⋆,(2.3)

where

I⋆ =

∫ +∞

0

∫ +∞

0

∫ +∞

0

yβλpzγωp|x− y|θpfp(x)

||x− y| − z| |sp
dxdydz.
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Thanks to the Fubini-Tonelli integral theorem, the integrand being non-negative,
we can write

I⋆ =

=

∫ +∞

0

fp(x)

{∫ +∞

0

yβλp
[∫ +∞

0

[z/|x− y|]γωp |x− y|(θ−s+γω)p+1

|1− z/|x− y||sp
1

|x− y|
dz

]
dy

}
dx

=

∫ +∞

0

x(θ−s+γω+βλ)p+2fp(x)

[∫ +∞

0

(y/x)βλp

|1− y/x|(s−θ−γω)p−1

1

x
Ω(x, y)dy

]
dx,

where

Ω(x, y) =

∫ +∞

0

|z/|x− y||γωp

|1− z/|x− y||sp
1

|x− y|
dz.

The expression of Ω(x, y) can be derived by applying the general lemma below.

Lemma 2.1. Let a ∈ (−1, 0) and b ∈ (a+ 1, 1). Then the following holds:∫ +∞

0

xa

|1− x|b
dx = B(a+ 1, 1− b) +B(b− a− 1, 1− b).

Proof. Using the Chasles integral theorem, the definition of the absolute value and
the change of variables x = 1/y, we get∫ +∞

0

xa

|1− x|b
dx =

∫ 1

0

xa

|1− x|b
dx+

∫ +∞

1

xa

|1− x|b
dx

=

∫ 1

0

xa

(1− x)b
dx+

∫ +∞

1

xa

(x− 1)b
dx

=

∫ 1

0

xa

(1− x)b
dx+

∫ 0

1

(1/y)a

(1/y − 1)b

(
− 1

y2
dy

)
=

∫ 1

0

x(a+1)−1(1− x)(1−b)−1dx+

∫ 1

0

y(b−a−1)−1(1− y)(1−b)−1dy

= B(a+ 1, 1− b) +B(b− a− 1, 1− b).

This concludes the proof of Lemma 2.1. □

Applying the change of variables m = z/|x − y| with respect to z and using
Lemma 2.1 with a well-configured parameterization, we obtain

Ω(x, y) =

∫ +∞

0

mγωp

|1−m|sp
dm = B(γωp+ 1, 1− sp) +B((s− γω)p− 1, 1− sp).
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We thus have

I⋆ = [B(γωp+ 1, 1− sp) +B((s− γω)p− 1, 1− sp)]

∫ +∞

0
x(θ−s+γω+βλ)p+2fp(x)Ξ(x)dx,

where

Ξ(x) =

∫ +∞

0

(y/x)βλp

|1− y/x|(s−θ−γω)p−1

1

x
dy.

Let us determine Ξ(x). Applying the change of variables n = y/x with respect to y

and using Lemma 2.1 with a well-configured parameterization, we obtain

Ξ(x) =

∫ +∞

0

nβλp

|1− n|(s−θ−γω)p−1
dn

= B(βλp+ 1, 2− (s− θ − γω)p) +B((s− θ − γω − βλ)p− 2, 2− (s− θ − γω)p).

We thus have

I⋆ = [B(γωp+ 1, 1− sp) +B((s− γω)p− 1, 1− sp)]

× [B(βλp+ 1, 2− (s− θ − γω)p) +B((s− θ − γω − βλ)p− 2,

2− (s− θ − γω)p)]×
∫ +∞

0

x(θ−s+γω+βλ)p+2fp(x)dx.(2.4)

Putting Equations (2.3) and (2.4) together, we get

I ≤ [B(γωp+ 1, 1− sp) +B((s− γω)p− 1, 1− sp)]

× [B(βλp+ 1, 2− (s− θ − γω)p) +B((s− θ − γω − βλ)p− 2,

2− (s− θ − γω)p)]×
∫ +∞

0

x(θ−s+γω+βλ)p+2fp(x)dx.(2.5)

For the term J we proceed in a similar way, paying particular attention to the
parameters involved. Using the Fubini-Tonelli integral theorem, the following ex-
pression holds:

J =

∫ +∞

0
gq(y)

{∫ +∞

0
zγ(1−ω)q

[∫ +∞

0

[x/(y + z)]αϵq(y + z)(σ−t+αϵ)q+1

|1− x/(y + z)|tq
1

y + z
dx

]
dz

}
dy

=

∫ +∞

0
y(σ−t+αϵ+γ(1−ω))q+2gq(y)

[∫ +∞

0

(z/y)γ(1−ω)q

(1 + z/y)(t−σ−αϵ)q−1

1

y
Υ(y, z)dz

]
dy,
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where

Υ(y, z) =

∫ +∞

0

[x/(y + z)]αϵq

|1− x/(y + z)|tq
1

y + z
dx.

Let us determine Υ(y, z). Applying the change of variables m = x/(y + z) with
respect to x and using Lemma 2.1 with a well-configured parameterization, we
get

Υ(y, z) =

∫ +∞

0

mαϵq

|1−m|tq
dm = B(αϵq + 1, 1− tq) +B((t− αϵ)q − 1, 1− tq).

We thus have

J = [B(αϵq + 1, 1− tq) +B((t− αϵ)q − 1, 1− tq)]

∫ +∞

0
y(σ−t+αϵ+γ(1−ω))q+2gq(y)Φ(y)dy,

where

Φ(y) =

∫ +∞

0

(z/y)γ(1−ω)q

(1 + z/y)(t−σ−αϵ)q−1

1

y
dz.

Let us determine Φ(y). Applying the change of variables n = z/y with respect to z

and using Lemma 2.1 with a well-configured parameterization, we obtain

Φ(y) =

∫ +∞

0

nγ(1−ω)q

(1 + n)(t−σ−αϵ)q−1
dn = B(γ(1− ω)q + 1, (t− σ − αϵ− γ(1− ω))q − 2).

We thus have

J = [B(αϵq + 1, 1− tq) +B((t− αϵ)q − 1, 1− tq)]

×B(γ(1− ω)q + 1, (t− σ − αϵ− γ(1− ω))q − 2)

×
∫ +∞

0

y(σ−t+αϵ+γ(1−ω))q+2gq(y)dy.(2.6)

Finally, we consider the term K. It follows from the triangle inequality that, for
any x, y, z > 0,

|x− y − z| ≥ ||x− z| − |y|| = ||x− z| − y| .

Therefore, we have

K ≤ K⋆,(2.7)
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where

K⋆ =

∫ +∞

0

∫ +∞

0

∫ +∞

0

xα(1−ϵ)ryβ(1−λ)r|x− z|ξrhr(z)

||x− z| − y|ur
dxdydz.

Using the Fubini-Tonelli integral theorem, we can write

K⋆ =

∫ +∞

0

hr(z)

{∫ +∞

0

xα(1−ϵ)r·

·

[∫ +∞

0

[y/|x− z|]β(1−λ)r |x− z|(ξ−u+β(1−λ))r+1

|1− y/|x− z||ur
1

|x− z|
dy

]
dx

}
dz

=

∫ +∞

0

z(ξ−u+β(1−λ)+α(1−ϵ))r+2hr(z)

[∫ +∞

0

(x/z)α(1−ϵ)r

|1− x/z|(u−ξ−β(1−λ))r−1

1

z
Ψ(x, z)dx

]
dz,

where

Ψ(x, z) =

∫ +∞

0

[y/|x− z|]β(1−λ)r

|1− y/|x− z||ur
1

|x− z|
dy.

Let us determine Ψ(x, z). Applying the change of variables m = y/|x − z| with
respect to y and using Lemma 2.1 with a well-configured parameterization, we
obtain

Ψ(x, z) =

∫ +∞

0

mβ(1−λ)r

|1−m|ur
dm = B(β(1− λ)r + 1, 1− ur)

+B((u− β(1− λ))r − 1, 1− ur).

We thus have

K⋆ = [B(β(1− λ)r + 1, 1− ur) +B((u− β(1− λ))r − 1, 1− ur)]

×
∫ +∞

0

z(ξ−u+β(1−λ)+α(1−ϵ))r+2hr(z)Θ(z)dz,

where

Θ(z) =

∫ +∞

0

(x/z)α(1−ϵ)r

|1− x/z|(u−ξ−β(1−λ))r−1

1

z
dx.

Let us determine Θ(z). Applying the change of variables n = x/z with respect to
x and using Lemma 2.1 with a well-configured parameterization, we find that
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Θ(z) =

∫ +∞

0

nα(1−ϵ)r

|1− n|(u−ξ−β(1−λ))r−1
dn

= B(α(1− ϵ)r + 1, 2− (u− ξ − β(1− λ))r)

+B((u− ξ − β(1− λ)− α(1− ϵ))r − 2, 2− (u− ξ − β(1− λ))r).

We thus have

K⋆ = [B(β(1− λ)r + 1, 1− ur) +B((u− β(1− λ))r − 1, 1− ur)]

× [B(α(1− ϵ)r + 1, 2− (u− ξ − β(1− λ))r)

+B((u− ξ − β(1− λ)− α(1− ϵ))r − 2, 2− (u− ξ − β(1− λ))r)] ·

·
∫ +∞

0

z(ξ−u+β(1−λ)+α(1−ϵ))r+2hr(z)dz.(2.8)

Putting Equations (2.7) and (2.8) together, we get

K ≤ [B(β(1− λ)r + 1, 1− ur) +B((u− β(1− λ))r − 1, 1− ur)]

× [B(α(1− ϵ)r + 1, 2− (u− ξ − β(1− λ))r)

+B((u− ξ − β(1− λ)− α(1− ϵ))r − 2, 2− (u− ξ − β(1− λ))r)] ·

·
∫ +∞

0

z(ξ−u+β(1−λ)+α(1−ϵ))r+2hr(z)dz.(2.9)

Combining Equations (2.2), (2.5), (2.6) and (2.9), we finally obtain∫ +∞

0

∫ +∞

0

∫ +∞

0

xαyβzγ(y + z)σ|x− y|θ|x− z|ξf(x)g(y)h(z)
|x− y − z|s+t+u

dxdydz

≤ [B(γωp+ 1, 1− sp) +B((s− γω)p− 1, 1− sp)]1/p

× [B(βλp+ 1, 2− (s− θ − γω)p) +B((s− θ − γω − βλ)p− 2,

2− (s− θ − γω)p)]1/p

× [B(αϵq + 1, 1− tq) +B((t− αϵ)q − 1, 1− tq)]1/q

× [B(γ(1− ω)q + 1, (t− σ − αϵ− γ(1− ω))q − 2)]1/q

× [B(β(1− λ)r + 1, 1− ur) +B((u− β(1− λ))r − 1, 1− ur)]1/r

× [B(α(1− ϵ)r + 1, 2− (u− ξ − β(1− λ))r)
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+B((u− ξ − β(1− λ)− α(1− ϵ))r − 2, 2− (u− ξ − β(1− λ))r)]1/r

×
[∫ +∞

0

x(θ−s+γω+βλ)p+2fp(x)dx

]1/p [∫ +∞

0

y(σ−t+αϵ+γ(1−ω))q+2gq(y)dy

]1/q
×

[∫ +∞

0

z(ξ−u+β(1−λ)+α(1−ϵ))r+2hr(z)dz

]1/r
,

so ∫ +∞

0

∫ +∞

0

∫ +∞

0

xαyβzγ(y + z)σ|x− y|θ|x− z|ξf(x)g(y)h(z)
|x− y − z|s+t+u

dxdydz

≤ ℵ
[∫ +∞

0

x(θ−s+γω+βλ)p+2fp(x)dx

]1/p [∫ +∞

0

y(σ−t+αϵ+γ(1−ω))q+2gq(y)dy

]1/q
×

[∫ +∞

0

z(ξ−u+β(1−λ)+α(1−ϵ))r+2hr(z)dz

]1/r
.

This ends the proof of Theorem 2.1. □

In addition to its originality, the proof is innovative in its use of an appropriate
decomposition of the integrand, careful handling of the parameters, and multiple
applications of Lemma 2.1. Each step is designed to isolate the contributions of
the individual components of the kernel function, rendering the analysis tractable
despite the complexity of the final expression.

This theorem thus significantly generalizes both Equation (1.1) and [17, Theo-
rem 1], extending their scope through the introduction of several new parameters.

3. CONCLUSION AND PERSPECTIVES

In this paper, we extend a key triple integral inequality of the Hardy-Hilbert
type, which was originally introduced by W. T. Sulaiman in 2011. By incorpo-
rating additional parameters into the kernel function, we obtained a more flexi-
ble framework. These parameters introduce new structural components, such as
weighted powers and absolute differences, which make the inequality applicable
to a wider range of problems. A rigorous and detailed proof is provided, paying
particular attention to the role of each parameter and the repeated use of the beta
function in deriving the sharp constant.
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This work opens up several avenues for future research. One obvious area
for further exploration would be analogous inequalities in higher dimensions or
within different domains, such as finite intervals or the entire real line. Another
promising area of study would be weighted versions of the inequality, where addi-
tional weight functions are applied to each variable. Furthermore, the developed
techniques could be adapted to establish discrete analogues or fractional integral
counterparts of the triple inequality. Finally, potential applications in analysis,
such as estimating solutions to certain integral equations, warrant further investi-
gation.

We hope that the general framework and methods presented here will serve
as a useful foundation for ongoing developments in the theory of triple integral
inequalities.
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