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METRIC SPACES WITH BINARY OPERATION

O.K. Adewale1, S.O. Ayodele2, A.C. Loyinmi3, B.E. Oyelade4, C. Iluno5, A. Oyem6,
and G.A. Adewale7

ABSTRACT. In this paper, we introduce an unusual concept, a metric space with
a binary operation. Introducing a binary operation into a standard metric space
instead of addition could lead to various interesting and potentially standard and
non-standard results, depending on the properties of the operation. This study
generalizes the concept of known metric spaces in the literature. We also establish
fixed point theorems, each with a specific binary operation.

1. INTRODUCTION

A standard metric space introduced by Frechet in 1906 is simply a metric space
where the metric satisfies the usual conditions (non-negativity, identity of indis-
cernibles, symmetry, and triangle inequality), with a specific operation (Addition).
In most mathematical structures, a binary operation is a rule that takes two ele-
ments from a set and combines them to form another element from the same set.
The typical binary operation in vector spaces is addition, but in a normal metric
space, no such algebraic operation is required. When an arbitrary binary operation
is introduced into a metric space, the behavior of the space can change in several
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ways depending on how the operation is defined. For further understanding, see
([1 - 11]).

Definition 1.1. Let Z be a nonempty set, ⊗, a binary operation with e as its identity
element, and b : X2 → R+. b is called an operational metric if the following axioms
are satisfied:

b1 : b(u, v) ≥ e;
b2 : b(u, v) = e if and only if u = v;
b3 : b(u, v) = b(v, u);
b4 : b(u, v) ≤ b(u,w)⊗ b(w, v) for all u, v, w ∈ Z.

Z together with b is called an operational metric space. Denoted by (Z, b,⊗)

Remark 1.1.

(i) If the binary operation ⊗ is defined by x ⊗ y = x + y, the Definition 2.1
reduces to metric space introduced by Fretchet (1906).

(ii) If the binary operation ⊗ is defined by x ⊗ y = x × y, the Definition 2.1
reduces to b- metric space introduced by Bakhtin (1989).

Example 1. Let Z = {x ∈ N : 3 ≤ x ≤ 9} and the binary operation ⊗ be defined
by x ⊗ y = x + y − 3. If b(x, y) = |x − y| + 3, then b is an operational metric and
(Z, b,⊗) is an operational metric space.

Verification:

(i) By definition

|x− y| =

{
x− y, if x− y ≥ 0;

y − x, if x− y < 0.

So, |x − y| ≥ 0. Since, |x − y| ≥ 0, |x − y| + 3 ≥ 3 for all x ∈ Z. Hence,
b(x, y) = |x− y|+ 3 ≥ e = 3.

(ii) If x ⊗ e = x, then x + e − 3 = x =⇒ e = 3. Then, b(x, y) = e =⇒
|x − y| + 3 = e =⇒ |x − y| = 0 =⇒ x = y. Conversely, if x = y, then
x− y = 0 =⇒ |x− y| = 0 =⇒ |x− y|+ 3 = e =⇒ b(x, y) = e

(iii) b(x, y) = | − (x− y)|+ 3 = | − x+ y|+ 3 = |y − x|+ 3 = b(y, x).
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(iv)

b(x, y) = |x− y|+ 3(1.1)

= |x− a+ a− y|+ 3(1.2)

≤ |x− a|+ |a− y|+ 3(1.3)

< |x− a|+ 3 + |a− y|+ 3(1.4)

= b(x, a) + b(a, y).(1.5)

Example 2. Let Z = R and the binary operation ⊗ be defined by x ⊗ y = x + y.
If b(x, y) = |x − y|, then b is an operational metric and (Z, b,⊗) is an operational
metric space.

Remark 1.2. The operational metric in Example 2.2 is an analogue of the usual
metric space.

Definition 1.2. Let (Z, b,⊗) be an operational metric space. An open sphere centered
at x with radius r in Z is defined by

Sr(x) = {a : b(x, a) < r}.

Definition 1.3. Let (Z, b,⊗) be an operational metric space. A closed sphere centered
at x with radius r in Z is defined by

Sr[x] = {a : b(x, a) ≤ r}.

Definition 1.4. Let (Z, b,⊗) be an operational metric space. A sphere centered at x
with radius r in Z is defined by

S(r, x) = {a : b(x, a) = r}.

Definition 1.5. Let (Z, b,⊗) be an operational metric space and {xn}, a sequence in
Z. A sequence, {xn} converge to t if for n ∈ N, b(xn, t) → e as n → ∞.

Definition 1.6. Let (Z, b,⊗) be an operational metric space and {xn}, a sequence in
Z. A sequence, {xn} in Z is said to be a Cauchy sequence if for n,m ∈ N with n > m,
b(xn, xm) → e as n,m → ∞.

Definition 1.7. Let (Z1, b1,⊗) and (Z2, b2,⊗) be two operational metric spaces. A
f : Z1 → Z2 is said to be continuous at a point z ∈ Z1 if for all ϵ > e the exists δ > e
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such that
b1(y, z) < δ =⇒ b2(f(y), f(z)) < ϵ.

The function f is continuous on Z1 if it is continuous at every point z ∈ Z1.

2. MAIN RESULTS

Theorem 2.1. Let (Z, b,⊗) be a complete operational metric space with an operation
defined by a⊗ b = a+ b. Suppose f : Z → Z is a map and there exists a real number
k satisfying 0 ≤ k < 1 for each a, b ∈ Z with

(2.1) b(fa, fb) ≤ k(b(a, b)).

Then f has a unique fixed point.

Proof. Considering (2.1) with an arbitrary point x0 ∈ X and define a sequence xn

by xn = fnx0,

(2.2) b(xn, xn+1) = b(fxn−1, fxn) ≤ k(b(xn−1, xn)).

Suppose f satisfies condition (7), then

b(xn, xn+1) = b(Txn−1, Txn)(2.3)

≤ k(b(xn−1, xn))(2.4)

≤ k2(b(xn−2, xn−1)).(2.5)

Using this repeatedly, we obtain

(2.6) b(xn, xn+1) ≤ kn(b(x0, x1)).

By using (b4) of Definition 2.1 with n > m, we have

b(xn, xm) ≤ b(xn, xn−1)⊗ b(xn−1, xm)(2.7)

= b(xn, xn−1) + b(xn−1, xm)(2.8)

= b(xn, xn−1) + b(xn−1, xn−2) + . . .+ b(xm+1, xm).(2.9)

So, we obtain
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b(xn, xm) ≤ b(xn, xn−1) + b(xn−1, xn−2) + . . .+ b(xm+1, xm)(2.10)

≤ kn−1b(x0, x1) + kn−2b(x0, x1) + . . .+ kmb(x0, x1)(2.11)

≤ [kn−1 + kn−2 + . . .+ km]b(x0, x1)(2.12)

≤ kn[k−1 + k−2 + . . .+ km−n]b(x0, x1)(2.13)

≤ kn

k − 1
b(x0, x1).(2.14)

Taking the limit of b(xn, xm) as n → ∞, we have

(2.15) lim
n,m→∞

b(xn, xm) → e.

So, {xn} is a S-Cauchy Sequence.
By the completeness of (Z, b,⊗), there exists u ∈ Z such that {xn} is convergent

to u.
Suppose fu ̸= u

(2.16) b(xn, fu) ≤ k(b(xn−1, u)).

Taking the limit as n → ∞ and using the fact that the function is continuous in its
variables, we get

(2.17) b(u, fu) ≤ k(b(u, u)).

Hence,

(2.18) b(u, fu) ≤ e.

This is a contradiction. So, fu = u.
To show the uniqueness, suppose v ̸= u is such that fv = v and fu = u, then

(2.19) b(fu, fv) ≤ k(b(u, v)).

Since fu = u and fv = v, we have

(2.20) b(u, v) ≤ e,

which implies that v = u. □

Theorem 2.2. Let (Z, b,⊗) be a complete operational metric space with an operation
defined by a⊗ b = a+ b. Suppose f : Z → Z is a map and there exists a real number
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k satisfying 0 ≤ k < 0.5 for each a, b ∈ Z with

(2.21) b(fa, fb) ≤ k[b(a, fa) + b(b, fb)].

Then f has a unique fixed point.

Proof. Considering (26) with an arbitrary point x0 ∈ X and define a sequence xn

by xn = fnx0,

(2.22) b(xn, xn+1) = b(fxn−1, fxn) ≤ k[b(xn−1, xn) + b(xn+1, xn)].

SO,

(2.23) b(xn, xn+1) ≤
k

1− k
b(xn−1, xn).

If q = k
1−k

, then

(2.24) b(xn, xn+1) ≤ qb(xn−1, xn).

Suppose f satisfies condition (2.21), then

b(xn, xn+1) ≤ q(b(xn−1, xn))(2.25)

≤ q2(b(xn−2, xn−1)).(2.26)

Using this repeatedly, we obtain

(2.27) b(xn, xn+1) ≤ qn(b(x0, x1)).

By using (b4) of Definition 2.1 with n > m, we have

b(xn, xm) ≤ b(xn, xn−1)⊗ b(xn−1, xm)(2.28)

= b(xn, xn−1) + b(xn−1, xm)(2.29)

= b(xn, xn−1) + b(xn−1, xn−2) + . . .+ b(xm+1, xm).(2.30)

We obtain

b(xn, xm) ≤ b(xn, xn−1) + b(xn−1, xn−2) + . . .+ b(xm+1, xm)(2.31)

≤ qn−1b(x0, x1) + qn−2b(x0, x1) + . . .+ qmb(x0, x1)(2.32)

≤ [qn−1 + qn−2 + . . .+ qm]b(x0, x1)(2.33)
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≤ qn[k−1 + q−2 + . . .+ qm−n]b(x0, x1)(2.34)

≤ qn

q − 1
b(x0, x1).(2.35)

Taking the limit of b(xn, xm) as n → ∞, we have

(2.36) lim
n,m→∞

b(xn, xm) → e.

So, {xn} is a S-Cauchy Sequence.
By the completeness of (Z, b,⊗), there exists u ∈ Z such that {xn} is convergent

to u.
Suppose fu ̸= u

(2.37) b(xn, fu) ≤ k[b(xn−1, xn) + b(u, fu)].

Taking the limit as n → ∞ and using the fact that the function is continuous in its
variables, we get

(2.38) b(u, fu) ≤ k(b(u, fu)).

Hence,

(2.39) b(u, fu) ≤ e.

This is a contradiction. So, fu = u.
To show the uniqueness, suppose v ̸= u is such that fv = v and fu = u, then

(2.40) b(fu, fv) ≤ 2k(b(u, v)).

Since fu = u and fv = v, we have

(2.41) b(u, v) ≤ e.

which implies that v = u. □

Theorem 2.3. Let (Z, b,⊗) be a complete operational metric space with an operation
defined by a⊗ b = a+ b. Suppose f : Z → Z is a map and there exists a real number
k satisfying 0 ≤ k < 0.5 for each a, b ∈ Z with

(2.42) b(fa, fb) ≤ k[b(a, fb) + b(b, fa)].

Then f has a unique fixed point.
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Proof. Considering (2.42) with an arbitrary point x0 ∈ X and define a sequence
xn by xn = fnx0,

(2.43) b(xn, xn+1) = b(fxn−1, fxn) ≤ k[b(xn−1, xn+1) + b(xn, xn)].

Further,

(2.44) b(xn, xn+1) ≤
k

1− k
b(xn−1, xn).

If q = k
1−k

, then

(2.45) b(xn, xn+1) ≤ qb(xn−1, xn).

Suppose f satisfies condition (50), then

b(xn, xn+1) ≤ q(b(xn−1, xn))(2.46)

≤ q2(b(xn−2, xn−1)).(2.47)

Using this repeatedly, we obtain

(2.48) b(xn, xn+1) ≤ qn(b(x0, x1)).

By using (b4) of Definition 2.1 with n > m, we have

b(xn, xm) ≤ b(xn, xn−1)⊗ b(xn−1, xm)(2.49)

= b(xn, xn−1) + b(xn−1, xm)(2.50)

= b(xn, xn−1) + b(xn−1, xn−2) + . . .+ b(xm+1, xm).(2.51)

Next, we obtain

b(xn, xm) ≤ b(xn, xn−1) + b(xn−1, xn−2) + . . .+ b(xm+1, xm)(2.52)

≤ qn−1b(x0, x1) + qn−2b(x0, x1) + . . .+ qmb(x0, x1)(2.53)

≤ [qn−1 + qn−2 + . . .+ qm]b(x0, x1)(2.54)

≤ qn[k−1 + q−2 + . . .+ qm−n]b(x0, x1)(2.55)

≤ qn

q − 1
b(x0, x1)(2.56)

Taking the limit of b(xn, xm) as n → ∞, we have

(2.57) lim
n,m→∞

b(xn, xm) → e.
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So, {xn} is a S-Cauchy Sequence.
By the completeness of (Z, b,⊗), there exists u ∈ Z such that {xn} is convergent

to u.
Suppose fu ̸= u

(2.58) b(xn, fu) ≤ k[b(xn−1, fu) + b(u, xn)].

Taking the limit as n → ∞ and using the fact that the function is continuous in its
variables, we get

(2.59) b(u, fu) ≤ k(b(u, fu)).

Hence,

(2.60) b(u, fu) ≤ e.

This is a contradiction. So, fu = u.
To show the uniqueness, suppose v ̸= u is such that fv = v and fu = u, then

(2.61) b(fu, fv) ≤ 2k(b(u, v)).

Since fu = u and fv = v, we have

(2.62) b(u, v) ≤ e,

which implies that v = u. □

Theorem 2.4. Let (Z, b,⊗) be a complete operational metric space with an operation
defined by a ⊗ b = max{a, b}. Suppose f : Z → Z is a map and there exists a real
number k satisfying 0 ≤ k < 1 for each a, b ∈ Z with

(2.63) b(fa, fb) ≤ k(b(a, b)).

Then f has a unique fixed point.

Proof. Considering (2.63) with an arbitrary point x0 ∈ X and define a sequence
xn by xn = fnx0,

(2.64) b(xn, xn+1) = b(fxn−1, fxn) ≤ k(b(xn−1, xn)).
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Suppose f satisfies condition (2.64), then

b(xn, xn+1) = b(Txn−1, Txn)(2.65)

≤ k(b(xn−1, xn))(2.66)

≤ k2(b(xn−2, xn−1)).(2.67)

Using this repeatedly, we obtain

(2.68) b(xn, xn+1) ≤ kn(b(x0, x1)).

By using (b4) of Definition 2.1 with n > m, we have

b(xn, xm) ≤ b(xn, xn−1)⊗ b(xn−1, xm)(2.69)

= max{b(xn, xn−1), b(xn−1, xm)}(2.70)

= max{b(xn, xn−1), b(xn−1, xn−2), . . . , b(xm+1, xm)}.(2.71)

So, we obtain

b(xn, xm) ≤ max{b(xn, xn−1), b(xn−1, xn−2), . . . , b(xm+1, xm)}(2.72)

≤ max{kn−1b(x0, x1), k
n−2b(x0, x1), . . . , k

mb(x0, x1)}(2.73)

≤ max{kn−1, kn−2, . . . , km}b(x0, x1).(2.74)

Taking the limit of b(xn, xm) as n → ∞, we have

(2.75) lim
n,m→∞

b(xn, xm) → e.

So, {xn} is a S-Cauchy Sequence.
By the completeness of (Z, b,⊗), there exists u ∈ Z such that {xn} is convergent

to u. Suppose fu ̸= u

(2.76) b(xn, fu) ≤ k(b(xn−1, u)).

Taking the limit as n → ∞ and using the fact that the function is continuous in its
variables, we get

(2.77) b(u, fu) ≤ k(b(u, u)).

Hence,

(2.78) b(u, fu) ≤ e.
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This is a contradiction. So, fu = u.
To show the uniqueness, suppose v ̸= u is such that fv = v and fu = u, then

(2.79) b(fu, fv) ≤ k(b(u, v)).

Since fu = u and fv = v, we have

(2.80) b(u, v) ≤ e,

which implies that v = u. □

Theorem 2.5. Let (Z, b,⊗) be a complete operational metric space with an operation
defined by a ⊗ b = max{a, b}. Suppose f : Z → Z is a map and there exists a real
number k satisfying 0 ≤ k < 0.5 for each a, b ∈ Z with

(2.81) b(fa, fb) ≤ k[b(a, fa) + b(b, fb)].

Then f has a unique fixed point.

Proof. Considering (2.81) with an arbitrary point x0 ∈ X and define a sequence
xn by xn = fnx0,

(2.82) b(xn, xn+1) = b(fxn−1, fxn) ≤ k[b(xn−1, xn) + b(xn+1, xn)].

The above implies

(2.83) b(xn, xn+1) ≤
k

1− k
b(xn−1, xn).

If q = k
1−k

, then

(2.84) b(xn, xn+1) ≤ qb(xn−1, xn).

Then

b(xn, xn+1) ≤ q(b(xn−1, xn))(2.85)

≤ q2(b(xn−2, xn−1)).(2.86)

Using this repeatedly, we obtain

(2.87) b(xn, xn+1) ≤ qn(b(x0, x1)).
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By using (b4) of Definition 2.1 with n > m, we have

b(xn, xm) ≤ b(xn, xn−1)⊗ b(xn−1, xm)(2.88)

= max{b(xn, xn−1), b(xn−1, xm)}(2.89)

= max{b(xn, xn−1), b(xn−1, xn−2), . . . , b(xm+1, xm)}.(2.90)

Next, we obtain

b(xn, xm) ≤ max{b(xn, xn−1), b(xn−1, xn−2), . . . , b(xm+1, xm)}(2.91)

≤ max{qn−1b(x0, x1), q
n−2b(x0, x1), . . . , q

mb(x0, x1)}(2.92)

≤ max{qn−1, qn−2, . . . , qm}b(x0, x1).(2.93)

Taking the limit of b(xn, xm) as n → ∞, we have

(2.94) lim
n,m→∞

b(xn, xm) → e.

So, {xn} is a S-Cauchy Sequence.
By the completeness of (Z, b,⊗), there exists u ∈ Z such that {xn} is convergent

to u.
Suppose fu ̸= u

(2.95) b(xn, fu) ≤ k[b(xn−1, xn) + b(u, fu)].

Taking the limit as n → ∞ and using the fact that the function is continuous in its
variables, we get

(2.96) b(u, fu) ≤ k(b(u, fu)).

Hence,

(2.97) b(u, fu) ≤ e.

This is a contradiction. So, fu = u.
To show the uniqueness, suppose v ̸= u is such that fv = v and fu = u, then

(2.98) b(fu, fv) ≤ 2k(b(u, v)).

Since fu = u and fv = v, we have b(u, v) ≤ e, which implies that v = u. □

Theorem 2.6. Let (Z, b,⊗) be a complete operational metric space with an operation
defined by a ⊗ b = max{a, b}. Suppose f : Z → Z is a map and there exists a real
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number k satisfying 0 ≤ k < 0.5 for each a, b ∈ Z with

(2.99) b(fa, fb) ≤ k[b(a, fb) + b(b, fa)].

Then f has a unique fixed point.

Proof. Considering (2.100) with an arbitrary point x0 ∈ X and define a sequence
xn by xn = fnx0,

(2.100) b(xn, xn+1) = b(fxn−1, fxn) ≤ k[b(xn−1, xn+1) + b(xn, xn)].

The above implies

(2.101) b(xn, xn+1) ≤
k

1− k
b(xn−1, xn).

If q = k
1−k

, then

(2.102) b(xn, xn+1) ≤ qb(xn−1, xn).

Then

b(xn, xn+1) ≤ q(b(xn−1, xn))(2.103)

≤ q2(b(xn−2, xn−1)).(2.104)

Using this repeatedly, we obtain

(2.105) b(xn, xn+1) ≤ qn(b(x0, x1)).

By using (b4) of Definition 2.1 with n > m, we have

b(xn, xm) ≤ b(xn, xn−1)⊗ b(xn−1, xm)(2.106)

= max{b(xn, xn−1), b(xn−1, xm)}(2.107)

= max{b(xn, xn−1), b(xn−1, xn−2), . . . , b(xm+1, xm)}.(2.108)

So, we obtain

b(xn, xm) ≤ max{b(xn, xn−1), b(xn−1, xn−2), . . . , b(xm+1, xm)}(2.109)

≤ max{qn−1b(x0, x1), q
n−2b(x0, x1), . . . , q

mb(x0, x1)}(2.110)

≤ max{qn−1, qn−2, . . . , qm}b(x0, x1).(2.111)
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Taking the limit of b(xn, xm) as n → ∞, we have

(2.112) lim
n,m→∞

b(xn, xm) → e.

So, {xn} is a S-Cauchy Sequence.
By the completeness of (Z, b,⊗), there exists u ∈ Z such that {xn} is convergent

to u.
Suppose fu ̸= u

(2.113) b(xn, fu) ≤ k[b(xn−1, fu) + b(u, xn)].

Taking the limit as n → ∞ and using the fact that the function is continuous in its
variables, we get

(2.114) b(u, fu) ≤ k(b(u, fu)).

Hence, b(u, fu) ≤ e. This is a contradiction. So, fu = u.
To show the uniqueness, suppose v ̸= u is such that fv = v and fu = u, then

b(fu, fv) ≤ 2k(b(u, v)). Since fu = u and fv = v, we have b(u, v) ≤ e, which
implies that v = u. □

CONCLUSION

In conclusion, a new abstract space is introduced in this research work and some
contractive mappings are established and used to prove some fixed point results
on the newly introduced space. Examples are given to validate the originality and
applicability of our results.
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