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STUDY OF A VARIANT OF THE HARDY INTEGRAL INEQUALITY

Christophe Chesneau

ABSTRACT. This paper investigates a new variant of the Hardy integral inequality,
which is formulated using an integral that quantifies the dispersion of a function
around its mean. Explicit upper bounds are derived for a variety of configurations.
The main inequality is then extended to include pairs of functions. Detailed proofs
accompany all results.

1. INTRODUCTION

The Hardy integral inequality is a well-known result in mathematical analysis.
First published by G. H. Hardy in 1920, it has since become a fundamental tool,
particularly in the study of Sobolev spaces and partial differential equations. See
[1–4] for the references and complete theory. The classical form of the Hardy
inequality is presented below. Let p > 1 and f : [0,+∞) 7→ [0,+∞) be a (non-
negative) function such that ∫ +∞

0

fp(t)dt < +∞.

2020 Mathematics Subject Classification. 26D15, 33E20.
Key words and phrases. Hardy integral inequality; integral dispersion; Hölder integral inequality;
general inequalities.
Submitted: 28.05.2025; Accepted: 13.06.2025; Published: 18.06.2025.

227



228 C. Chesneau

Then we have ∫ +∞

0

[
1

x

∫ x

0

f(t)dt

]p
dx ≤

(
p

p− 1

)p ∫ +∞

0

fp(t)dt.

The constant [p/(p− 1)]p is optimal, meaning that the inequality cannot be satis-
fied by a smaller constant for any function f satisfying the required assumptions.
This inequality has inspired a wide variety of generalizations and extensions, in-
cluding versions in higher dimensions, weighted inequalities, and discrete ana-
logues. For the purposes of this paper, we will focus on an extension to a modifi-
able interval, as described below. Let α > 0, p > 1 and f : [0, α) 7→ [0,+∞) be a
function such that ∫ α

0

fp(t)dt < +∞.

Then we have∫ α

0

[
1

x

∫ x

0

f(t)dt

]p
dx ≤

(
p

p− 1

)p ∫ α

0

fp(t)

[
1−

(
t

α

)1−1/p
]
dt.(1.1)

We will refer to it as the "finite interval version" of the Hardy integral inequality.
For detailed discussions and derivations on this version, see [6, 7]. It can also be
viewed as a refinement of a result established by N. Levinson in 1964 (see [5]).

In this paper, we investigate a variant of the "finite interval version" of the Hardy
integral inequality. More precisely, within a similar framework and subject to ad-
ditional monotonicity and integrability assumptions on the function f , we derive
bounds for the following integral:∫ α

0

[
f(x)− 1

x

∫ x

0

f(t)dt

]p
dx.

In a sense, this integral can be viewed as a global measure of the dispersion of
f around its integral mean, i.e., (1/x)

∫ x

0
f(t)dt. Our objective is to quantify this

deviation using an inequality approach. Subsequently, we extend our analysis to
two natural generalizations involving pairs of functions. More precisely, denoting
the second function by g, we investigate bounds for the following two-function
expressions: ∫ α

0

[
f(x)− 1

x

∫ x

0

f(t)dt

] [
g(x)− 1

x

∫ x

0

g(t)dt

]
dx
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and ∫ α

0

∣∣∣∣f(x)g(x)− 1

x2

[∫ x

0

f(t)dt

] [∫ x

0

g(t)dt

]∣∣∣∣p dx.
These expressions arise naturally when studying the interactions between func-
tions and their respective integral means. The resulting inequalities are called the
first and second types for the first and second integrals, respectively. They are
of interest due to their potential applications in the theory of operators and in-
tegral transforms. Moreover, they enhance our comprehension of the interaction
between integral means and multiplication forms.

The rest of the paper is organized as follows: Section 2 contains the inequali-
ties involving a single function. Results involving two functions are presented in
Section 3. Section 4 provides a conclusion.

2. RESULTS INVOLVING A SINGLE FUNCTION

2.1. Main theorem. The main theorem is presented below, together with the nec-
essary assumptions and technical details. The proof is primarily based on an inte-
gration by parts and a thorough application of the "finite interval version" of the
Hardy integral inequality.

Theorem 2.1. Let α > 0 or α → +∞, p > 1 and f : [0, α) 7→ [0,+∞) be a
differentiable non-decreasing function such that

lim
t→0

tf(t) = 0,

∫ α

0

tp [f ′(t)]
p

[
1−

(
t

α

)1−1/p
]
dt < +∞.

Then we have∫ α

0

[
f(x)− 1

x

∫ x

0

f(t)dt

]p
dx ≤

(
p

p− 1

)p ∫ α

0

tp [f ′(t)]
p

[
1−

(
t

α

)1−1/p
]
dt.

Proof. To begin, an integration by parts using limt→0 tf(t) = 0 gives∫ x

0

f(t)dt = [tf(t)]t=x
t→0 −

∫ x

0

tf ′(t)dt = xf(x)− 0−
∫ x

0

tf ′(t)dt

= xf(x)−
∫ x

0

tf ′(t)dt.
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From this, we derive

f(x)− 1

x

∫ x

0

f(t)dt =
1

x

∫ x

0

tf ′(t)dt.

We thus can write∫ α

0

[
f(x)− 1

x

∫ x

0

f(t)dt

]p
dx =

∫ α

0

[
1

x

∫ x

0

tf ′(t)dt

]p
dx

=

∫ α

0

1

xp

[∫ x

0

f⋆(t)dt

]p
dx,(2.1)

where f⋆(t) = tf ′(t). Since f is non-decreasing, f⋆ is a non-negative function.
Applying the "finite interval version" of the Hardy integral inequality to f⋆ as de-
scribed in Equation (1.1), we get∫ α

0

1

xp

∣∣∣∣∫ x

0

f⋆(t)dt

∣∣∣∣p dx ≤
(

p

p− 1

)p ∫ α

0

[f⋆(t)]
p

[
1−

(
t

α

)1−1/p
]
dt

=

(
p

p− 1

)p ∫ α

0

tp [f ′(t)]
p

[
1−

(
t

α

)1−1/p
]
dt.(2.2)

Joining Equations (2.1) and (2.2), we obtain∫ α

0

[
f(x)− 1

x

∫ x

0

f(t)dt

]p
dx ≤

(
p

p− 1

)p ∫ α

0

tp [f ′(t)]
p

[
1−

(
t

α

)1−1/p
]
dt.

This concludes the proof of Theorem 2.1. □

It is worth noting that, since f is non-decreasing, we have

1

x

∫ x

0

f(t)dt ≤ f(x)
1

x

∫ x

0

dt = f(x),

making the main integral well defined.
Furthermore, since f is non-negative, the following inequality is obviously al-

ways true: ∫ α

0

[
f(x)− 1

x

∫ x

0

f(t)dt

]p
dx ≤

∫ α

0

fp(x)dx.

In a sense, Theorem 2.1 proposes an alternative bound, optimized by the use of
the "finite interval version" of the Hardy integral inequality. The derivative of f
plays a key role in this bound.
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It is also worth noting that we can switch to the infinite case by simply consid-
ering α → +∞. The main result thus reduces to∫ +∞

0

[
f(x)− 1

x

∫ x

0

f(t)dt

]p
dx ≤

(
p

p− 1

)p ∫ +∞

0

tp [f ′(t)]
p
dt.

This can be viewed as a complement to, or a counterpart of, the classical Hardy
integral inequality.

As another immediate consequence, for any ϵ > 0, using the Markov inequality,
we have∫

{x∈[0,α); f(x)−(1/x)
∫ x
0 f(t)dt≥ϵ}

dx ≤ 1

ϵp

∫ α

0

[
f(x)− 1

x

∫ x

0

f(t)dt

]p
dx

≤ 1

ϵp

(
p

p− 1

)p ∫ α

0

tp [f ′(t)]
p

[
1−

(
t

α

)1−1/p
]
dt.

Therefore, thanks to our inequality, we can control of the measure of the set{
x ∈ [0, α); f(x)− 1

x

∫ x

0

f(t)dt ≥ ϵ

}
.

We would also like to mention that an alternative version of Theorem 2.1 incor-
porating an auxiliary convex function is presented in the appendix. This version
may be of independent interest.

The rest of the section is devoted to complementary results. These are presented
in the form of propositions.

2.2. Complementary propositions. The result below simplifies the weight in the
integral of the upper bound in Theorem 2.1. This simplification comes at the cost
of a modified constant factor. Note that the case α → +∞ is excluded.

Proposition 2.1. Let α > 0, p > 1 and f : [0, α) 7→ [0,+∞) be a differentiable
non-decreasing function such that

lim
t→0

tf(t) = 0,

∫ α

0

tp+1/p−1 [f ′(t)]
p
dt < +∞.

Then we have∫ α

0

[
f(x)− 1

x

∫ x

0

f(t)dt

]p
dx ≤ 1

4
α1−1/p

(
p

p− 1

)p ∫ α

0

tp+1/p−1 [f ′(t)]
p
dt.
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Proof. Applying Theorem 2.1 and rearranging the right-hand side term, we have∫ α

0

[
f(x)− 1

x

∫ x

0

f(t)dt

]p
dx ≤

(
p

p− 1

)p ∫ α

0

tp [f ′(t)]
p

[
1−

(
t

α

)1−1/p
]
dt

= α1−1/p

(
p

p− 1

)p ∫ α

0

tp+1/p−1 [f ′(t)]
p
k(t)dt,(2.3)

where

k(t) =

(
t

α

)1−1/p
[
1−

(
t

α

)1−1/p
]
.

Since t ∈ [0, α] and p > 1, we have (t/α)1−1/p ∈ [0, 1], so that

0 ≤ k(t) ≤ sup
u∈[0,1]

u(1− u) =
1

4
.(2.4)

Joining Equations (2.3) and (2.4), we get∫ α

0

[
f(x)− 1

x

∫ x

0

f(t)dt

]p
dx ≤ 1

4
α1−1/p

(
p

p− 1

)p ∫ α

0

tp+1/p−1 [f ′(t)]
p
dt.

This concludes the proof of Proposition 2.1. □

This result is mainly of interest if α is not too large because limα→+∞ α1−1/p =

+∞.
The proposition below emphasizes the case p = 2 of Theorem 2.1, leading to an

original integral inequality.

Proposition 2.2. Let α > 0 or α → +∞, and f : [0, α) 7→ [0,+∞) be a differentiable
non-decreasing function such that

lim
t→0

tf(t) = 0,

∫ α

0

t2 [f ′(t)]
2

[
1−

√
t

α

]
dt < +∞.

Then we have∫ α

0

f 2(x)dx+

∫ α

0

1

x2

[∫ x

0

f(t)dt

]2
dx

≤ 4

∫ α

0

t2|f ′(t)|2
[
1−

√
t

α

]
dt+ 2

∫ α

0

f(x)
1

x

[∫ x

0

f(t)dt

]
dx.



STUDY OF A VARIANT OF THE HARDY INTEGRAL INEQUALITY 233

Proof. Applying Theorem 2.1 with p = 2, we get∫ α

0

[
f(x)− 1

x

∫ x

0

f(t)dt

]2
dx ≤

(
2

2− 1

)2 ∫ α

0

t2 [f ′(t)]
2

[
1−

√
t

α

]
dt.

Developing the left-hand side term and determining the constant factor in the
right-hand side term, we obtain∫ α

0

{
f 2(x)− 2f(x)

1

x

∫ x

0

f(t)dt+
1

x2

[∫ x

0

f(t)dt

]2}
dx

≤ 4

∫ α

0

t2 [f ′(t)]
2

[
1−

√
t

α

]
dt.

This can be rearranged as follows:∫ α

0

f 2(x)dx+

∫ α

0

1

x2

[∫ x

0

f(t)dt

]2
dx

≤ 4

∫ α

0

t2|f ′(t)|2
[
1−

√
t

α

]
dt+ 2

∫ α

0

f(x)
1

x

[∫ x

0

f(t)dt

]
dx.

This concludes the proof of Proposition 2.2. □

A simplified version of Proposition 2.2 is given below.

Proposition 2.3. Let α > 0 and f : [0, α) 7→ [0,+∞) be a differentiable non-
decreasing function such that

lim
t→0

tf(t) = 0,

∫ α

0

t3/2 [f ′(t)]
2
dt < +∞.

Then we have ∫ α

0

f 2(x)dx+

∫ α

0

1

x2

[∫ x

0

f(t)dt

]2
dx

≤
√
α

∫ α

0

t3/2|f ′(t)|2dt+ 2

∫ α

0

f(x)
1

x

[∫ x

0

f(t)dt

]
dx.

Proof. Applying Proposition 2.2 and rearranging the right-hand side term, we have
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∫ α

0

f 2(x)dx+

∫ α

0

1

x2

[∫ x

0

f(t)dt

]2
dx

≤ 4

∫ α

0

t2|f ′(t)|2
[
1−

√
t

α

]
dt+ 2

∫ α

0

f(x)
1

x

[∫ x

0

f(t)dt

]
dx

= 4
√
α

∫ α

0

t3/2|f ′(t)|2k(t)dt+ 2

∫ α

0

f(x)
1

x

[∫ x

0

f(t)dt

]
dx,(2.5)

where

k(t) =

√
t

α

[
1−

√
t

α

]
.

Since t ∈ [0, α], we have
√

t/α ∈ [0, 1], so that

0 ≤ k(t) ≤ sup
u∈[0,1]

u(1− u) =
1

4
.(2.6)

Joining Equations (2.5) and (2.6), we get∫ α

0

f 2(x)dx+

∫ α

0

1

x2

[∫ x

0

f(t)dt

]2
dx

≤
√
α

∫ α

0

t3/2|f ′(t)|2dt+ 2

∫ α

0

f(x)
1

x

[∫ x

0

f(t)dt

]
dx.

This concludes the proof of Proposition 2.3. □

The rest of the paper focuses on the two-function version of these results, dis-
tinguishing between the first and second types.

3. RESULTS INVOLVING TWO FUNCTIONS

3.1. Results of the first type. In line with the approach taken in Theorem 2.1,
the proposition below provides a tractable upper bound for an integral involving
two functions and their respective mean integrals. We recall that the main integral
is of the following form:∫ α

0

[
f(x)− 1

x

∫ x

0

f(t)dt

] [
g(x)− 1

x

∫ x

0

g(t)dt

]
dx.
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Proposition 3.1. Let α > 0 or α → +∞, p > 1 and f, g : [0, α) 7→ [0,+∞) be two
differentiable non-decreasing functions such that

lim
t→0

tf(t) = 0,

∫ α

0

tp [f ′(t)]
p

[
1−

(
t

α

)1−1/p
]
dt < +∞

and

lim
t→0

tg(t) = 0,

∫ α

0

tp/(p−1) [g′(t)]
p/(p−1)

[
1−

(
t

α

)1/p
]
dt < +∞.

Then we have ∫ α

0

[
f(x)− 1

x

∫ x

0

f(t)dt

] [
g(x)− 1

x

∫ x

0

g(t)dt

]
dx

≤ p2

p− 1

{∫ α

0

tp [f ′(t)]
p

[
1−

(
t

α

)1−1/p
]
dt

}1/p

×

{∫ α

0

tp/(p−1) [g′(t)]
p/(p−1)

[
1−

(
t

α

)1/p
]
dt

}1−1/p

.

Proof. Let q = p/(p − 1) > 1. Considering the main integrand as the product of
two terms, one depending on f and the other depending on g, and applying the
Hölder integral inequality, we obtain∫ α

0

[
f(x)− 1

x

∫ x

0

f(t)dt

] [
g(x)− 1

x

∫ x

0

g(t)dt

]
dx

≤
{∫ α

0

[
f(x)− 1

x

∫ x

0

f(t)dt

]p
dx

}1/p

(3.1)

×
{∫ α

0

[
g(x)− 1

x

∫ x

0

g(t)dt

]q
dx

}1/q

.(3.2)

It follows from Theorem 2.1 that∫ α

0

[
f(x)− 1

x

∫ x

0

f(t)dt

]p
dx

≤
(

p

p− 1

)p ∫ α

0

tp [f ′(t)]
p

[
1−

(
t

α

)1−1/p
]
dt.(3.3)

In a similar way but with the function g instead of f and the parameter q instead
of p, we get
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∫ α

0

[
g(x)− 1

x

∫ x

0

g(t)dt

]q
dx ≤

(
q

q − 1

)q ∫ α

0

tq [g′(t)]
q

[
1−

(
t

α

)1−1/q
]
dt.(3.4)

Joining Equations (3.1), (3.3) and (3.4), and using the definition of q, we obtain∫ α

0

[
f(x)− 1

x

∫ x

0

f(t)dt

] [
g(x)− 1

x

∫ x

0

g(t)dt

]
dx

≤

{(
p

p− 1

)p ∫ α

0

tp [f ′(t)]
p

[
1−

(
t

α

)1−1/p
]
dt

}1/p

×

{(
q

q − 1

)q ∫ α

0

tq [g′(t)]
q

[
1−

(
t

α

)1−1/q
]
dt

}1/q

=

(
p

p− 1

)(
q

q − 1

){∫ α

0

tp [f ′(t)]
p

[
1−

(
t

α

)1−1/p
]
dt

}1/p

×

{∫ α

0

tq [g′(t)]
q

[
1−

(
t

α

)1−1/q
]
dt

}1/q

=
p2

p− 1

{∫ α

0

tp [f ′(t)]
p

[
1−

(
t

α

)1−1/p
]
dt

}1/p

×

{∫ α

0

tp/(p−1) [g′(t)]
p/(p−1)

[
1−

(
t

α

)1/p
]
dt

}1−1/p

.

This ends the proof of Proposition 3.1. □

The proposition below is a simplified version of Proposition 3.1, with a different
weight function for the integral of the upper bound. This comes at the cost of a
wider constant factor.

Proposition 3.2. Let α > 0, p > 1 and f, g : [0, α) 7→ [0,+∞) be two differentiable
non-decreasing functions such that

lim
t→0

tf(t) = 0,

∫ α

0

tp+1/p−1 [f ′(t)]
p
dt < +∞
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and

lim
t→0

tg(t) = 0,

∫ α

0

tp/(1−p)−1/p [g′(t)]
p/(p−1)

dt < +∞.

Then we have ∫ α

0

[
f(x)− 1

x

∫ x

0

f(t)dt

] [
g(x)− 1

x

∫ x

0

g(t)dt

]
dx

≤ 1

4

(
p2

p− 1

)
α2(1−1/p)/p

{∫ α

0

tp+1/p−1 [f ′(t)]
p
dt

}1/p

×
{∫ α

0

tp/(p−1)−1/p [g′(t)]
p/(p−1)

dt

}1−1/p

.

Proof. Applying Proposition 3.1 and rearranging the right-hand side term, we have∫ α

0

[
f(x)− 1

x

∫ x

0

f(t)dt

] [
g(x)− 1

x

∫ x

0

g(t)dt

]
dx

≤ p2

p− 1

{∫ α

0

tp [f ′(t)]
p

[
1−

(
t

α

)1−1/p
]
dt

}1/p

×

{∫ α

0

tp/(p−1) [g′(t)]
p/(p−1)

[
1−

(
t

α

)1/p
]
dt

}1−1/p

=
p2

p− 1

{
α1−1/p

∫ α

0

tp+1/p−1k(t) [f ′(t)]
p
dt

}1/p

×
{
α1/p

∫ α

0

tp/(p−1)−1/pℓ(t) [g′(t)]
p/(p−1)

dt

}1−1/p

,(3.5)

where

k(t) =

(
t

α

)1−1/p
[
1−

(
t

α

)1−1/p
]
, ℓ(t) =

(
t

α

)1/p
[
1−

(
t

α

)1/p
]
.

Since t ∈ [0, α] and p > 1, we have (t/α)1−1/p ∈ [0, 1] and (t/α)1/p ∈ [0, 1] , so that

0 ≤ k(t) ≤ sup
u∈[0,1]

u(1− u) =
1

4
,

0 ≤ ℓ(t) ≤ sup
v∈[0,1]

v(1− v) =
1

4
.(3.6)

Joining Equations (3.5) and (3.6), we obtain
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∫ α

0

[
f(x)− 1

x

∫ x

0

f(t)dt

] [
g(x)− 1

x

∫ x

0

g(t)dt

]
dx

≤ p2

p− 1

{∫ α

0

tp+1/p−1α1−1/p1

4
[f ′(t)]

p
dt

}1/p

×
{∫ α

0

tp/(p−1)−1/pα1/p1

4
[g′(t)]

p/(p−1)
dt

}1−1/p

=
1

4

(
p2

p− 1

)
α2(1−1/p)/p

{∫ α

0

tp+1/p−1 [f ′(t)]
p
dt

}1/p

×
{∫ α

0

tp/(p−1)−1/p [g′(t)]
p/(p−1)

dt

}1−1/p

.

This ends the proof of Proposition 3.2. □

3.2. Results of the second type. The main result of the second type is developed
below, based on an integral of the following form:∫ α

0

∣∣∣∣f(x)g(x)− 1

x2

[∫ x

0

f(t)dt

] [∫ x

0

g(t)dt

]∣∣∣∣p dx.
We emphasize the assumptions made on f and g, and the originality of the upper
bound obtained.

Proposition 3.3. Let α > 0 or α → +∞, p > 1 and f, g : [0, α) 7→ [0,+∞) be two
differentiable non-decreasing functions such that

lim
t→0

tf(t) = 0, f(α) < +∞,∫ α

0

tp [f ′(t)]
p

[
1−

(
t

α

)1−1/p
]
dt < +∞

and

lim
t→0

tg(t) = 0, g(α) < +∞,∫ α

0

tp/(p−1) [g′(t)]
p/(p−1)

[
1−

(
t

α

)1/p
]
dt < +∞.
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Then we have ∫ α

0

∣∣∣∣f(x)g(x)− 1

x2

[∫ x

0

f(t)dt

] [∫ x

0

g(t)dt

]∣∣∣∣p dx
≤ 2p−1

(
p

p− 1

)p

max [fp(α), gp(α)]

×

{∫ α

0

tp
{
[f ′(t)]

p
+ [g′(t)]

p}[
1−

(
t

α

)1−1/p
]
dt

}
.

Proof. The following decomposition holds:

f(x)g(x)− 1

x2

[∫ x

0

f(t)dt

] [∫ x

0

g(t)dt

]
= f(x)g(x)− g(x)

1

x

∫ x

0

f(t)dt+ g(x)
1

x

∫ x

0

f(t)dt

− 1

x2

[∫ x

0

f(t)dt

] [∫ x

0

g(t)dt

]
= g(x)

[
f(x)− 1

x

∫ x

0

f(t)dt

]
+

1

x

[∫ x

0

f(t)dt

] [
g(x)− 1

x

∫ x

0

g(t)dt

]
.

Using this and the convexity inequality |a+ b|p ≤ 2p−1[|a|p+ |b|p], with a, b ∈ R, we
get ∣∣∣∣f(x)g(x)− 1

x2

[∫ x

0

f(t)dt

] [∫ x

0

g(t)dt

]∣∣∣∣p
=

∣∣∣∣g(x) [f(x)− 1

x

∫ x

0

f(t)dt

]
+

1

x

[∫ x

0

f(t)dt

] [
g(x)− 1

x

∫ x

0

g(t)dt

]∣∣∣∣p(3.7)

≤ 2p−1

{
gp(x)

[
f(x)− 1

x

∫ x

0

f(t)dt

]p
+

1

xp

[∫ x

0

f(t)dt

]p [
g(x)− 1

x

∫ x

0

g(t)dt

]p}
.

Since f and g are non-decreasing and f(α) < +∞ and g(α) < +∞, for any x ∈
[0, α), we have g(x) ≤ g(α) and

1

x

∫ x

0

f(t)dt ≤ f(x)
1

x

∫ x

0

dt = f(x) ≤ f(α).
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We thus derive

2p−1

{
gp(x)

[
f(x)− 1

x

∫ x

0

f(t)dt

]p
+

1

xp

[∫ x

0

f(t)dt

]p [
g(x)− 1

x

∫ x

0

g(t)dt

]p}
≤ 2p−1max [fp(α), gp(α)]

×
{[

f(x)− 1

x

∫ x

0

f(t)dt

]p
+

[
g(x)− 1

x

∫ x

0

g(t)dt

]p}
.(3.8)

Joining Equations (3.7) and (3.8), we obtain∣∣∣∣f(x)g(x)− 1

x2

[∫ x

0

f(t)dt

] [∫ x

0

g(t)dt

]∣∣∣∣p
≤ 2p−1max [fp(α), gp(α)]

×
{[

f(x)− 1

x

∫ x

0

f(t)dt

]p
+

[
g(x)− 1

x

∫ x

0

g(t)dt

]p}
.

Integrating both sides with respect to x with x ∈ [0, α], we obtain∫ α

0

∣∣∣∣f(x)g(x)− 1

x2

[∫ x

0

f(t)dt

] [∫ x

0

g(t)dt

]∣∣∣∣p dx
≤ 2p−1max [fp(α), gp(α)](3.9)

×
{∫ α

0

[
f(x)− 1

x

∫ x

0

f(t)dt

]p
dx+

∫ α

0

[
g(x)− 1

x

∫ x

0

g(t)dt

]p
dx

}
.

Applying Theorem 2.1 to f and g, we have{∫ α

0

[
f(x)− 1

x

∫ x

0

f(t)dt

]p
dx+

∫ α

0

[
g(x)− 1

x

∫ x

0

g(t)dt

]p
dx

}
≤

(
p

p− 1

)p ∫ α

0

tp [f ′(t)]
p

[
1−

(
t

α

)1−1/p
]
dt(3.10)

+

(
p

p− 1

)p ∫ α

0

tp [g′(t)]
p

[
1−

(
t

α

)1−1/p
]
dt

=

(
p

p− 1

)p ∫ α

0

tp
{
[f ′(t)]

p
+ [g′(t)]

p}[
1−

(
t

α

)1−1/p
]
dt.
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Joining Equations (3.9) and (3.10), we obtain∫ α

0

∣∣∣∣f(x)g(x)− 1

x2

[∫ x

0

f(t)dt

] [∫ x

0

g(t)dt

]∣∣∣∣p dx
≤ 2p−1

(
p

p− 1

)p

max [fp(α), gp(α)]×{∫ α

0

tp
{
[f ′(t)]

p
+ [g′(t)]

p}[
1−

(
t

α

)1−1/p
]
dt

}
.

This ends the proof of Proposition 3.3. □

The proposition below is a simplified version of Proposition 3.3, with modifi-
cations to the weight function in the upper-bound integral and another constant
factor.

Proposition 3.4. Let α > 0, p > 1 and f, g : [0, α) 7→ [0,+∞) be two differentiable
non-decreasing functions such that

lim
t→0

tf(t) = 0, f(α) < +∞,

∫ α

0

tp+1/p−1 [f ′(t)]
p
dt < +∞

and

lim
t→0

tg(t) = 0, g(α) < +∞,

∫ α

0

tp/(p−1)−1/p [g′(t)]
p/(p−1)

dt < +∞.

Then we have ∫ α

0

∣∣∣∣f(x)g(x)− 1

x2

[∫ x

0

f(t)dt

] [∫ x

0

g(t)dt

]∣∣∣∣p dx
≤ 2p−3

(
p

p− 1

)p

α1−1/pmax [fp(α), gp(α)]×{∫ α

0

tp+1/p−1
{
[f ′(t)]

p
+ [g′(t)]

p}
dt

}
.

Proof. Applying Proposition 3.3 and rearranging the right-hand side term, we have∫ α

0

∣∣∣∣f(x)g(x)− 1

x2

[∫ x

0

f(t)dt

] [∫ x

0

g(t)dt

]∣∣∣∣p dx
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≤ 2p−1

(
p

p− 1

)p

max [fp(α), gp(α)]

×

{∫ α

0

tp
{
[f ′(t)]

p
+ [g′(t)]

p}[
1−

(
t

α

)1−1/p
]
dt

}

= 2p−1

(
p

p− 1

)p

max [fp(α), gp(α)]

×
{
α1−1/p

∫ α

0

tp+1/p−1
[
[f ′(t)]

p
+ [g′(t)]

p]
k(t)dt

}
,(3.11)

where

k(t) =

(
t

α

)1−1/p
[
1−

(
t

α

)1−1/p
]
.

Since t ∈ [0, α], we have (t/α)1−1/p ∈ [0, 1], so that

0 ≤ k(t) ≤ sup
u∈[0,1]

u(1− u) =
1

4
.(3.12)

Joining Equations (3.11) and (3.12), we get∫ α

0

∣∣∣∣f(x)g(x)− 1

x2

[∫ x

0

f(t)dt

] [∫ x

0

g(t)dt

]∣∣∣∣p dx
≤ 2p−1

(
p

p− 1

)p

max [fp(α), gp(α)]

×
{
α1−1/p

∫ α

0

tp+1/p−1
[
[f ′(t)]

p
+ [g′(t)]

p] 1
4
dt

}
= 2p−3

(
p

p− 1

)p

α1−1/pmax [fp(α), gp(α)]

×
{∫ α

0

tp+1/p−1
{
[f ′(t)]

p
+ [g′(t)]

p}
dt

}
.

This ends the proof of Proposition 3.4. □

4. CONCLUSION

In this paper, we have established new variants of the Hardy-type inequality for
an integral that measure the dispersion of a function around its integral mean. By
imposing additional monotonicity and integrability conditions, we derived sharp
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upper bounds for this integral. We also introduced two-function generalizations
that address additive and multiplicative interactions between the functions and
their integral means. The resulting inequalities, which we termed the first and
second types, have applications in operator theory, functional analysis, and the
study of integral transforms.

Future work may explore optimality conditions and possible extensions to higher
dimensions, as well as applications to partial differential equations and harmonic
analysis. This research has the potential to enhance the theoretical foundation and
practical application of Hardy-type integral inequalities in contemporary mathe-
matical analysis.

Conflicts of interest: The author declares that he has no competing interests.

Funding: The author has not received any funding.

APPENDIX

This appendix presents a general integral inequality inspired by Theorem 2.1.
The main novelty lies in the use of a convex function that goes beyond the power
function type.

Proposition 4.1. Let α > 0 or α → +∞, f : [0, α) 7→ R be a differentiable function
such that

lim
t→0

tf(t) = 0

and ϕ : R 7→ [0,+∞) be a convex function with ϕ(0) = 0. We assume that∫ α

0

ϕ (αf ′(t))

(
1− t

α

)
dt < +∞.

Then we have∫ α

0

ϕ

(
f(x)− 1

x

∫ x

0

f(t)dt

)
1

x
dx ≤ 1

α

∫ α

0

ϕ (αf ′(t))

(
1− t

α

)
dt.

Furthermore, if α ∈ (0, 1], assuming that∫ α

0

ϕ (f ′(t))

(
1− t

α

)
dt < +∞,
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then we have∫ α

0

ϕ

(
f(x)− 1

x

∫ x

0

f(t)dt

)
1

x
dx ≤

∫ α

0

ϕ (f ′(t))

(
1− t

α

)
dt.

Proof. Using an integration by parts and limt→0 tf(t) = 0, we obtain∫ x

0

f(t)dt = [tf(t)]t=x
t→0 −

∫ x

0

tf ′(t)dt

= xf(x)− 0−
∫ x

0

tf ′(t)dt

= xf(x)−
∫ x

0

tf ′(t)dt.

We therefore have

f(x)− 1

x

∫ x

0

f(t)dt =
1

x

∫ x

0

tf ′(t)dt

and ∫ α

0

ϕ

(
f(x)− 1

x

∫ x

0

f(t)dt

)
1

x
dx =

∫ α

0

ϕ

(
1

x

∫ x

0

tf ′(t)dt

)
1

x
dx.(4.1)

Applying the Jensen integral inequality, we obtain∫ α

0

ϕ

(
1

x

∫ x

0

tf ′(t)dt

)
1

x
dx ≤

∫ α

0

(
1

x

∫ x

0

ϕ (tf ′(t)) dt

)
1

x
dx

=

∫ α

0

∫ x

0

ϕ (tf ′(t))
1

x2
dtdx.(4.2)

Changing the order of integration by the Fubini-Tonelli integral theorem, the inte-
grand being non-negative so of constant sign, we get∫ α

0

∫ x

0

ϕ (tf ′(t))
1

x2
dtdx =

∫ α

0

∫ α

t

ϕ (tf ′(t))
1

x2
dxdt

=

∫ α

0

ϕ (tf ′(t))

(∫ α

t

1

x2
dx

)
dt =

∫ α

0

ϕ (tf ′(t))

(
1

t
− 1

α

)
dt(4.3)

=

∫ α

0

ϕ (tf ′(t))

(
1− t

α

)
1

t
dt.

Since t ∈ [0, α], we have t/α ∈ [0, 1], so that the inequality of convexity satisfied
by ϕ and ϕ(0) = 0 give
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∫ α

0

ϕ (tf ′(t))

(
1− t

α

)
1

t
dt

=

∫ α

0

ϕ

(
t

α
αf ′(t) +

(
1− t

α

)
× 0

)(
1− t

α

)
1

t
dt

≤
∫ α

0

(
t

α
ϕ (αf ′(t)) +

(
1− t

α

)
ϕ(0)

)(
1− t

α

)
1

t
dt

=
1

α

∫ α

0

ϕ (αf ′(t))

(
1− t

α

)
dt.(4.4)

Joining Equations (4.1), (4.2), (4.3) and (4.4), we obtain∫ α

0

ϕ

(
f(x)− 1

x

∫ x

0

f(t)dt

)
1

x
dx ≤ 1

α

∫ α

0

ϕ (αf ′(t))

(
1− t

α

)
dt.

The main result is established.
Furthermore, if α ∈ (0, 1], based on the previous result, and using the inequality

of convexity satisfied by ϕ and ϕ(0) = 0, we have∫ α

0

ϕ

(
f(x)− 1

x

∫ x

0

f(t)dt

)
1

x
dx

≤ 1

α

∫ α

0

ϕ (αf ′(t))

(
1− t

α

)
dt

=
1

α

∫ α

0

ϕ (αf ′(t) + (1− α)× 0)

(
1− t

α

)
dt

≤ 1

α

∫ α

0

(αϕ (f ′(t)) + (1− α)ϕ(0))

(
1− t

α

)
dt

=

∫ α

0

ϕ (f ′(t))

(
1− t

α

)
dt.

The secondary result is obtained, ending the proof. □
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