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TOPOLOZICAL DERIVATIVE OF THE FRACTIONAL p-LAPLACIAN
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ABSTRACT. The objective of this article is the study of topological optimization
problems with p-Laplacian operators, i.e. (−∆)sp where 0 < s < 1 and p ≥ 2.

In [22], we began studying this problem to determine the shape derivative. In
the same paper, we studied existence results using s-gamma convergence. In this
paper, we work with the open class checking the ϵ− cône property to obtain that
the existence of an optimal shape. And finally we found the topological derivative
of the functional through the minmax method.

1. INTRODUCTION

This introduction was inspired by our earlier work on fractional p-Laplacian. For
more information, the reader can also consult the paper by [22]. In mathematics,
the fractional Laplacian is an operator, which extends the concept of Laplacian
spatial derivatives to fractional powers. This operator is often used to generalize
certain types of partial differential equation. There exist various definitions of
fractional Laplacian but most of them are equivalents.

The fractional Laplacian can be defined by Fourier transform [17], singular op-
erator [34], or generate C0 semi-group [26]. Some of the remarkable physical
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phenomena where fractional Laplacian has found use include anomalous diffu-
sion and quasi geostropic flows, turbulence and water waves, molecular dynamics,
anomalous diffusion in plasma. For more informations, we refer the reader to [2]
and references therein.

Naturally, due to the various definitions and applications of fractional Laplacian,
several methods have been proposed for solving problems involving the fractional
Laplacian. In particular, Cafarelli and Silvestre [13] constructed fractional Lapla-
cian from an extension problem to the upper half space for a specific elliptic partial
differential equation. In [23], M. Fall et. al. studied the regularity of solutions.
The study of fractional p-Laplacian was well investigated in [24,25] where authors
described abnormal diffusion by fractional dynamics and derived various frac-
tional partial differential equations from the walking models. Recently, a numer-
ical method for fractional Laplacian based on the singular integral representation
operator was presented in [2, 5]. Caffarelli et al. [13, 16] proved characteristics
for the general fractional powers of the Laplacian and other integro-differential
operators, and from these characterizations they provided some properties from
integro-differential equations of purely local argument in extension problems. It
is also worth noting that in [6,7,29,31,32], Ros-oton, Xavier and Serra proposed
a new way to investigate the regularity of the solution u to the boundary of the
considered domain. Based on the upon works, Fall et al. in [23] established some
extended results when u is the non-local schrodinguer solution. Furthermore, we
note that some research studies have been devoted to shape optimization prob-
lems. For instance, in [14, 15] Dalibard et al. discussed the existence of optimal
shape for a functional when s = 1

2
whereas M. Fall et al. [21] studied the case

0 < s < 1 by using the variational method and shape optimization.
We recall that these types of problems were studied by [22], but with the objec-

tive of studying the form derivative of the associated functional using vector fields.
This is what gives us the idea of wanting to look at the topological derivative, but
this time using the recent work of [8,9,27]. So we will study the topological deriv-
ative using the minmax method. for more information on this method the reader
can consult the work of [10]. And for more practical cases the reader can also
consult the paper by [22], where the author calculates the topological derivative
of a functional linked to a linear thermoplastic problem. on the other hand in the
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paper by [27] the author established a practical case of the topological derivative
linked to Helmholtz problems.

The main objective in this article is to determine the topological derivative of
the functional F (Ωt) = F (Ωt, ut), where the perturbed domain Ωt of Ω is defined
by Ωt = Tt(Ω) or Ωt = Ω \ Et depending on the derivative to be calculated.

Through in-depth analysis of the above mentioned works, we found that the
investigation of shape optimization problem with nonlocal operators like the frac-
tional Laplacian as a constraint are rarely available in the literature, which mo-
tivates this present study. Non-local operators such as ∆s

p appear naturally in
the continuum mechanics, phase transition phenomena, dynamics population and
games theory. In this paper, we look at following shape optimization problem:

(1.1) min
Ω∈O

F (Ω),

where F is a given cost functional, O a class of admissible domains, Ω is an open
bounded subset of RN , N ≥ 2 and such that
(1.2)

F (Ω) = j(Ω, uΩ) =
C(N, s)

2

∫
RN

∫
RN

| uΩ(x)− uΩ(y) |p−2 (u(x)− u(y))

| x− y |N+ps
dxdy,

with uΩ the solution to the following p-Laplacian operator

(1.3)


(−∆)spu = f in Ω,

u = 0 on RN \ Ω,

p ≥ 2.

This work is a continuation and a generalization of [14,21,22] to the p-Laplacian
operator 0 < s < 1 and p ≥ 2. But this time, we’re looking at things a little more
from a different angle, i.e. in the direction of the topological derivative. We first
prove the existence of results in the class of open sets verifying the property of the
epsilon cône. We consider the established results of M. Fall et al. [21]. This allows
us to provide how the topological derivative of the considered functional can be
determined in these spaces.

The work program is as follows. Section 2 gives some preliminary results con-
cerning the fractionary problem and some Sobolev inequalities. The existence
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theorem for a weak solution of the constraint equation is presented in Section 3.
Section 4 establishes the existence result for an optimal form in the class of open-
ings verifying the ϵ− cône property. In Section 5, the topological derivative of
the functional is computed and Section 6 provides a conclusion and some possible
extensions.

2. PRELIMINARIES ON THE FRACTIONAL OPERATORS

We recall some fundamental definitions and results on shape optimization prob-
lem. Particullary, We focus only on the cases of the laplacian and the p-laplacian
operators, for p ≥ 2. We have the following definitions.

Definition 2.1. Let 0 < s < 1 and p ∈ [2,+∞), N ≥ sp and Ω a bounded open set
of RN , with Lipchitz boundary, Let

[u]s,p =

(∫
Ω

∫
Ω

| u(x)− u(y) |p

| x− y |N+ps
dxdy

) 1
p

be the Gagliardo semi norm of a measurable function u.

1. We define W s,p(Ω) as follows

W s,p(Ω) = {u ∈ Lp(Ω) such that [u]s,p < +∞}

endowed with the usual norm

∥ u ∥W s,p(Ω)=

(∫
Ω

|u|pLp + [u]s,p

) 1
p

.

2. Consider the closed linear subspace W s,p
0 (Ω) by

W s,p
0 (Ω) =

{
u ∈ W s,p(RN) : u = 0; a.e in RN \ Ω

}
.

equivalently renormed by setting ∥u∥s,p = [u]s,p.

Definition 2.2. Let Ω ⊂ RN be an open set. Given A ⊂ Ω, for any 0 < s < 1 and
p ≥ 1, we define the Gagliardo s−capacity of A relatively to Ω as

caps(A,Ω) = inf {[u]ps : u ∈ C(Ω), u ≥ 0, A ⊂ {u ≥ 1}} ,

where
[u]ps =

∫
Ω

∫
Ω

| u(x)− u(y) |p

| x− y |N+ps
dxdy.
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Definition 2.3. A subset A of Ω is a s-quasi open set if there exists a decreasing
sequence {wk}k∈N of open subsets of Ω such that caps(wk,Ω) → 0, as k → +∞, and
A ∪ wk is an open set for all k ∈ N.

Now, we provide a definition of (s− γ)−convergence. This definition is inspired
by γ− convergence, see for instance [3,12].

Definition 2.4. Let {Ak}k∈N ⊂ As(Ω) and A ∈ As(Ω). We say that Ak γs−−−−→A if

usAk
−→ usA strongly in L2(Ω).

Definition 2.5. Let 0 < s < 1 be fixed and let Fs : As(Ω) −→ R be such that: Fs is
lower semi continuous with respect to the (s− γ)− convergence; that is

Ak γs−−−−→A implies Fs(A) ≤ lim
k−→+∞

inf Fs(Ak).

Fs is decreasing with respect to set inclusion; that is Fs(A) ≥ Fs(B) whenever A ⊂ B.

Definition 2.6. Let p ∈]2,+∞) and s ∈ (0, 1), the fractional p-laplacian is defined
by

(−∆)spu(x) = 2 lim
ϵ−→0

∫
RN\Bϵ(x)

| u(x)− u(y) |p−2 (u(x)− u(y))

| x− y |N+ps
dy

= 2V p(u)

∫
RN

| u(x)− u(y) |p−2 (u(x)− u(y))

| x− y |N+ps
dy.

where Vp(u) is the principal value of u.

Remark 2.1. For p ̸= 2, the fractional p-laplacian (−∆)sp is non-linear and the value
of (−∆)spu(x) = (−∆)spu(x,Ω, N). This definition is a generalization of the fractional
Laplacian operator for p = 2, witch is defined
by:

(−∆)su(x) = C(N, s)V p(u)

∫
RN

u(x)− u(y)

| x− y |N+2s
dy.

Theorem 2.1. Let p ∈ [2,+∞) and s ∈ (0, 1). Then, the application

(−∆)sp : W
s,p
0 (Ω) −→ (W s,p

0 (Ω))′

uΩ −→ (−∆)spuΩ.

is well defined. Moreover
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1. ∀u, v ∈ W s,p
0 (Ω) we have:

⟨(−∆)spu, v⟩ =
∫
RN

∫
RN

| u(x)− u(y) |p−2 (u(x)− u(y))(v(x)− v(y))

| x− y |N+ps
dxdy.

2. ∀u, v ∈ W s,p
0 we have:

⟨(−∆)spu, v⟩ ≤ [u]p−1
s,p [v]s,p.

Proof. See [22]. □

This theorem will be useful in the following.

Theorem 2.2. Let s ∈ (0, 1) and p ∈ [2,+∞), q ∈ [1, p], Ω ⊂ RN be an open bounded
subset domain for W s,p(Ω) and T be a bounded subset of Lp(Ω). Suppose that

sup
f∈T

(∫
Ω

∫
Ω

| f(x)− f(y) |p

| x− y |N+ps
dxdy

)
< +∞.

Then T is pre-compact in Lq(Ω).

Proof. For the proof, we refer to [15]. □

Theorem 2.3. LetK be a compact andB a bounded open of RN . Let Ωn be a sequence
of open with Ωn ⊂ K ⊂ B, verifying the ownership of the ϵ− cône. Then there is an
open Ω verifying the ownership of the ϵ− cône and an extracted sequence Ωnk

such as

Ωnk
H−−−−→Ω, χΩnk

L1p.p−−−−−−→χΩ,

Ωnk
H−−−−→Ω, ∂Ωnk

H−−−−→∂Ω.

Proof. See [1]. □

This result which will allow us to characterize the existence of solution.

3. EXISTENCE OF SOLUTION FOR THE NON LOCAL DIRICHLET PROBLEM.

We recall that this part was established by Fall and al in [22]. For more infor-
mation, the reader can consult this article.

The referred types of problems that we will considered in this section are studied
by Caffarelli and Sylvestre [13] in the special case s = 1

2
. Moreover, the regularity

of the solution of this problem is studied in [23] and [28], In this work, we propose
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to generalize the above case 0 < s < 1, by using a variational approach. In this
section, we are concerned with the extension result of the problem given by

(3.1)


(−∆)spu = f in Ω

u = 0 on RN \ Ω

p ≥ 2.

To prove the existence result, We use the Euler Lagrange equation associated (3.1)
in order to transform it into a functional F (u).

Theorem 3.1. Let Ω be an open subset of RN , N > 1 of class C2, s ∈ (0, 1) and
p ∈ [2,+∞). Then there exists a unique weak solution u ∈ W s,p(Ω) of the problem
(3.1). Moreover this solution minimizes the problem

inf
u∈W s,p(Ω)

(F (u, u)).

with
F (u, v) = ⟨(−∆)sp−1u, v⟩W s,p(Ω) −

∫
Ω

f(x)v(x)dx.

The following lemma 3.1 shows us sequence (uk) is bounded in W s,p(Ω). That
is, [u]s,p < +∞. It is useful for the proof of the Theorem 3.1.

Lemma 3.1. Since (uk)k≥1 ⊂ W s,p(Ω) is a minimizing sequence of F that is

lim
k−→+∞

F (uk, uk) = inf
v∈W s,p(Ω)

F (v, v) = m

then (uk)k≥1 is bounded in W s,p(Ω).

Proof. By hypothesis, {uk} is a minimizing sequence of the function F (uk, uk) and
m its limit, there exists a rank k, from which we have

m ≤ F (uk, uk) ≤ m+
1

k
, ∀k ≥ 1.

F (u, v) =

∫
RN

∫
RN

| u(x)− u(y) |p−2 (u(x)− u(y))(v(x)− v(y))

| x− y |N+ps
dxdy−

∫
Ω

f(x)v(x)dx.

Therefore, we have

F (uk, uk) ≥ [uk]
p−1
s,p [uk]s,p −

p− 1

p
∥ f ∥

p
p−1

L2(Ω) −
1

p
∥ uk ∥pL2(Ω) .
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Then,

(3.2) [uk]
p−1
s,p [uk]s,p ≤ F (uk, uk) +

p− 1

p
∥ f ∥

p
p−1

L2(Ω) +
1

p
∥ uk ∥pL2(Ω) .

Taking into account the fact that f ∈ Lp(Ω), the sequence uk ∈ Lp(Ω) and the
functional F (uk, uk) ≤ m+ 1

k
, then for k large enough, we show that the quantity

on the right hand side of (3.2) is bounded, then the left hand side of (3.2), which
implies that the norm [.]s,p is bounded by a constant which depends only on f and
m. □

Proof. of Theorem 3.1 Let v ∈ W s,p
0 (Ω), multiplying the first equation of (3.1) by

v ∈ W s,p
0 (Ω) and by integrating on Ω we have:

(3.3)
∫
Ω

(−∆)spu vdx =

∫
Ω

f(x)v(x)dx.

By using definition of the scalar product in W s,p
0 (Ω), we have:∫

R2N

(−∆)spu v =

∫
RN

∫
RN

| u(x)− u(y) |p−2 (u(x)− u(y))(v(x)− v(y))

| x− y |N+ps
dxdy.

and equation (3.3) becomes:∫
RN

∫
RN

| u(x)− u(y) |p−2 (u(x)− u(y))(v(x)− v(y))

| x− y |N+ps
dxdy

=

∫
Ω

f(x)v(x)dx.

(3.4)

In what follows, let F be the functional defined as

F (u, v) =

∫
RN

∫
RN

| u(x)− u(y) |p−2 (u(x)− u(y))(v(x)− v(y))

| x− y |N+ps
dxdy

−
∫
Ω

f(x)v(x)dx,

in others words,

(3.5) F (u, v) = ⟨(−∆)spu, v⟩ −
∫
Ω

f(x)v(x)dx.

We have to show that the functional F is lower and is greater than −∞. From
Hölder’s inequality, it follows
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| F (u, v) | ≤
(∫

R2N

| u(x)− u(y) |p

| x− y |N+ps
dxdy

) p−1
p
(∫

R2N

| (v(x)− v(y) |p

| x− y |N+ps
dxdy

) 1
p

+

∫
Ω

|f(x)v(x)|dx,

giving directly
| F (u, v) |≤ [u]p−1

s,p [v]s,p+ ∥ f ∥L2(Ω)∥∥L2(Ω) .

Since u, v ∈ W s,p(Ω), we derive that the functional F (u, v) is bounded.
Since Ω ∈ Oϵ, the Theorem 2.2 shows that [.]s,p is pre-compact in Lp(Ω).

Since (uk)k≥1 is bounded in W s,p(Ω), then there exists an subsequence (ukl)l≥1

of (uk)k≥1 such that: ukl ⇀ u ∈ W s,p,ukl −→ u ∈ Lp(Ω) and ukl ⇀ u ∈ Lp(Ω),
when, −→ +∞. It follows that

F (ukl , ukl) =

∫
RN

∫
RN

| ukl(x)− ukl(y) |p−2 (ukl(x)− ukl(y))(ukl(x)− ukl(y))

| x− y |N+ps
dxdy

−
∫
Ω

f(x)ukl(x)dx ≤ m+ ϵ, ∀ϵ ≥ 0.

It follows from the above inequality, that∫
R2N

| (ukl(x)− ukl(y)) |p

| x− y |N+ps
dxdy ≤

∫
Ω

f(x)ukl(x)dx+m+ ϵ, ∀ϵ ≥ 0.

Applying Fatou’s Lemma, we obtain:∫
R2N

lim inf
l−→+∞

| (ukl(x)− ukl(y)) |p

| x− y |N+ps
dxdy ≤ lim inf

l−→+∞

∫
Ω

fukldx+m+ ϵ, ∀ϵ ≥ 0∫
R2N

| u(x)− u(y) |p

| x− y |N+ps
dxdy ≤ lim inf

l−→+∞

∫
Ω

fukldx+m+ ϵ, ∀ϵ ≥ 0.

By the weak convergence, u ∈ Lp(Ω), we have:

lim inf
l−→+∞

∫
Ω

fukldx = lim
l−→+∞

∫
Ω

fukldx =

∫
Ω

fudx.∫
R2N

| u(x)− u(y) |p

| x− y |N+ps
dxdy ≤

∫
Ω

fudx+m+ ϵ, ∀ϵ ≥ 0.

F (u, u) =

∫
R2N

| u(x)− u(y) |p

| x− y |N+ps
dxdy −

∫
Ω

fudx ≤ m+ ϵ, ∀ϵ ≥ 0.

This implies F (u, u) ≤ m =⇒ F (u, u) = m. □
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In the following section, we establish the main result of optimal form existence.
In [22] the existence of optimal form was obtained using s-gamma convergence.
But this time we use the epsilon cone property to determine it.

4. EXISTENCE OF A SOLUTION BY THE ϵ− CÔNE PROPERTY

Theorem 4.1. Let Oad ⊂ Oϵ be a set open bounded domain of Rn. Then there exists
on open set Ω ∈ Oad satisfying

F (Ω) = min
Ω∈Oad

F (Ω).

Proof. Let us show that F is bounded:

F (Ω) =
C(N, s)

2

∫
RN

∫
RN

| uΩ(x)− uΩ(y) |p−2 (u(x)− u(y))

| x− y |N+ps
dxdy

| F (Ω) | = C(N, s)

2

∣∣∣∣∫
RN

∫
RN

| uΩ(x)− uΩ(y) |p−2 (u(x)− u(y))

| x− y |N+ps
dxdy

∣∣∣∣ > −∞.

So F is reduced, and

| F (Ω) | ≤ C(N, s)

2

(∫
R2N

| u(x)− u(y) |p

| x− y |N+ps
dxdy

) p−2
p
(∫

R2N

| (u(x)− u(y) |p

| x− y |N+ps
dxdy

) 1
p

| F (Ω) | ≤ C(N, s)

2
[u]p−2

s,p [u]s,p

| F (Ω) | ≤ C(N, s)

2
[u]p−1

s,p .

So F is increased. Hence F is bounded.
Let

(4.1) m = inf
Ω∈Oϵ orOad

F (Ω).

Then according to the properties of the lower bound, there exists a minimizing
sequence (Ωn) of Oad such that

F (Ωn) −→ m = inf
Ω∈Oϵ orOad

F (Ω).

Let Ωn ∈ Oad then according to the compactness theorem 2.3 there is an open
Ω ∈ Oϵ and an extracted sequence Ωnk

which converges to Ω in the sense of
Hausdorff.
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Like Ωn ∈ Oad ⊂ Oϵ, so the sequence Ωnk
checks the property of the ϵ− cône. Ac-

cording to the theorem 2.3, we can extract from the sequence Ωnk
, a sub-sequence

Ωnk
which verifies the following convergences:

Ωnk
H−−−−→Ω, χΩnk

L1p.p−−−−−−→χΩ,Ωnk
H−−−−→Ω, ∂Ωnk

H−−−−→∂Ω,

with Ω checking the ownership of the ϵ− cône. It remains to show that:

limF (Ωnk
) = F (Ω) = inf

Ω∈Oϵ orOad

F (Ω).

From the variational formulation (3.4) we have:∫
RN

∫
RN

| uΩ(x)− uΩ(y) |p−2 (u(x)− u(y))(v(x)− v(y))

| x− y |N+ps
dxdy

=

∫
Ω

f(x)v(x)dx.

(4.2)

So, in Ωnk
we get the following formulation:∫

RN

∫
RN

| uΩnk
(x)− uΩnk

(y) |p−2 (uΩnk
(x)− uΩnk

(y))(vΩnk
(x)− vΩnk

(y))

| x− y |N+ps
dxdy

=

∫
Ωnk

f(x)vΩnk
(x)dx.

(4.3)

In addition we have also shown in the variational formulation part (3.2) that(
p− C2

p

)
[uk]

p
s,p ≤ m+

1

k
+
p− 1

p
∥ f ∥

p
p−1

L2(Ω) .

So the sequence uΩnk
is bounded in W s,p(Ωnk

). Like Ω ∈ Oϵ, Sobolev’s inequal-
ity theorem 2.2 tells us that W s,p(Ωnk

) is precompact in Lp(Ωnk
). Since (uΩnk

) is
bounded in W s,p(Ωnk

), then we can find an extracted sequence (uΩnk
)k≥1 of (uΩnk

)

noted also (uΩnk
)k≥1 such that:

(uΩnk
)k≥1 ⇀ u∗Ω ∈ W s,p, (uΩnk

)k≥1 −→ u∗Ω ∈ Lp(Ω),

and (uΩnk
)k≥1 ⇀ u∗Ω ∈ Lp(Ω), when k −→ ∞.

We have φ ∈ W s,p(Ωn) so φ ∈ W s,p(Ωnk
) from a certain rank. From the relation

(4.3), we obtain∫
R2N

∫
RN

| uΩnk
(x)− uΩnk

(y) |p−2 (uΩnk
(x)− uΩnk

(y))(φΩnk
(x)− φΩnk

(y))

| x− y |N+ps
dxdy
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=

∫
Ωnk

f(x)φΩnk
(x)dx.(4.4)

Then by making k tend towards infinity and using weak convergence we have:∫
RN

∫
RN

| u∗Ω(x)− u∗Ω(y) |p−2 (u∗(x)− u∗(y))(φ(x)− φ(y))

| x− y |N+ps
dxdy

=

∫
Ω

f(x)φ(x)dx ∀φ ∈ W s,p.

(4.5)

The first term of the equality (4.5) represents the weak formulation of∫
Ω

(−∆)spu
∗
Ωφ(x)dx =

∫
Ω

f(x)φ(x)dx ∀φ ∈ W s,p.

So we have: (−∆)spu
∗
Ω = f in Ω

u∗Ω = 0 on RN \ Ω
.

Finally by taking φ = uΩnk
in (4.3), and φ = uΩ in (4.2) then that gives:

lim

(∫
RN

∫
RN

| uΩnk
(x)− uΩnk

(y) |p

| x− y |N+ps
dxdy

)
= lim

(∫
Ωnk

f(x)uΩnk
(x)dx

)

=

∫
Ω

f(x)u∗Ω =

∫
R2N

[u∗Ω(x)− u∗Ω(y)]
p

| x− y |N+ps
dxdy.

By taking the limit to infinity we have:∫
R2N

[(uΩnk
(x)− uΩnk

(y))− (uΩ(x)− uΩ(y))]
p

| x− y |N+ps
= 0.

So,

lim

∫
Ωnk

f
(
uΩnk

− uΩ
)
= 0.

So we get: ∫
R2N

[(uΩnk
(x)− uΩnk

(y))− (uΩ(x)− uΩ(y))]
p

| x− y |N+ps

=

∫
R2N

(uΩnk
(x)− uΩnk

(y))− (uΩ(x)− uΩ(y))

| x− y |N+ps
= 0,
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∫
Ωnk

f
(
uΩnk

− uΩ
)
= 0.

And in the same way we show that

lim

∫
Ωnk

f
(
uΩnk

− uΩ
)
= 0.

So we get:
uΩnk

(x)− uΩnk
(y) Lp

−−−−→uΩ(x)− uΩ(y)

uΩnk
Lp

−−−−→uΩ.

And so we have:

F (Ωnk
) =

C(N, s)

2

∫
RN

∫
RN

| uΩnk
(x)− uΩnk

(y) |p−2 (uΩnk
(x)− uΩnk

(y))

| x− y |N+ps
dxdy

→ F (Ω) =
C(N, s)

2

∫
RN

∫
RN

| uΩ(x)− uΩ(y) |p−2 (uΩ(x)− uΩ(y))

| x− y |N+ps
dxdy.

So we can conclude that there is an open Ω∗ which minimizes F. □

5. DERIVATION OF THE TOPOLOGICAL DERIVATIVE

5.1. Some preliminary results. In this subsection, we describe how to calculate
the topological derivative using the min-max approach, see [8,27]. To begin with,
we will look at the following definitions and notations.

Definition 5.1. A Lagrangian function is a function of the form

(t, x, y) 7→ L(t, x, y) : [0, τ ]×X × Y → R τ > 0,

where X is a vector espace, Y a non empty subset of vector space and the function
y 7→ L(t, x, y) is affine.

Associate with the parameter t the parametrized minimax

t 7→ g(t) = inf
x∈X

sup
y∈Y

L(t, x, y) : [0, τ ] → R and dg(0) = lim
t→0+

g(t)− g(0)
t

.

When the limits exist, we will use the following notations
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dtL(0, x, y) = lim
t→0+

L(t, x, y)− L(0, x, y)

t

φ ∈ X, dxL(t, x, y;φ) = lim
θ→0+

L(t, x+ θφ, y)− L(t, x, y)

θ

ϕ ∈ Y dyL(t, x, y;ϕ) = lim
θ→0+

L(t, x, y + θϕ)− L(t, x, y)

θ
.

Since L(t, x, y) is affine in y, for all (t, x) ∈ [0, τ ]×X,

∀ y, ψ ∈ Y dyL(t, x, y;ψ) = L(t, x, ψ)− L(t, x, 0) = dyL(t, x, 0, ψ).(5.1)

The state equation at t ≥ 0

Find xt ∈ X such that for all ψ ∈ Y, dyL(t, x
t, 0;ψ) = 0.(5.2)

The set of states xt at t ≥ 0 is denoted

E(t) =
{
xt ∈ X, ∀ ψ ∈ Y, dyL(t, x

t, 0;ψ) = 0
}
.(5.3)

The adjoint equation at t ≥ 0 is

Find pt ∈ Y such that for all φ ∈ X, dxL(t, x
t, pt;φ) = 0.(5.4)

The set of solutions pt at t ≥ 0 is denoted

Y (t, xt) =
{
pt,∈ Y, ∀ φ ∈ X, dxL(t, x

t, pt;φ) = 0
}
.(5.5)

Finally the set of minimisers for the minimax is given by

X(t) =

{
xt ∈ X, g(t) = inf

x∈X
sup
y∈Y

L(t, x, y) = sup
y∈Y

L(t, xt, y)

}
.(5.6)

Lemma 5.1. (Constrained infimum and minimax) We have the following asser-
tions:

(i) infx∈X supy∈Y L(t, x, y) = infx∈E(t) L(t, x, 0).

(ii) The minimax g(t) = +∞ if and only if E(t) = ∅. And in this case we have
X(t) = X.

(iii) If E(t) ̸= ∅, then

X(t) =

{
xt ∈ E(t) : L(t, xt, 0) = inf

x∈E(t)
L(t, x, 0)

}
⊂ E(t)

and g(t) < +∞.
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Proof. See [8–10]. □

To end this subsection, we give definitions and theorems on d-dimensional Minkowski
content and d-rectifiability.

Definition 5.2. Let E be a subset of a metric space X. E ⊂ X is d-rectifiable if
it is the image of a compact subset K of Rd by a continuous lipschitzian function
f : Rd → X.

Let E be a closed compact set of RN and r ≥ 0, the distance function dE and the
r-dilatation Er of E are defined as follows:

dE(x) = inf
x0∈E

|x− x0|, Er = {x ∈ RN : dE(x) ≤ r}.

Definition 5.3. Given d, 0 ≤ d ≤ N the upper and lower d-dimensional Minkowski
contents of a set E are defined by an r-dilatation of this set as follows

M∗d(E) = lim sup
r→0+

mN(Er)

αN−drN−d
; Md

∗ (E) = lim inf
r→0+

mN(Er)

αN−drN−d

where mN is the Lebesgue measure in RN and αN−d is the volume of the ball of radius
1 in RN−d.

Both concepts can be found in [8,9].

We need the following assumption for everything that follows:

Hypothesis (H0)
Let X be a vector space.

(i) For all t ∈ [0, τ ], x0 ∈ X(0), xt ∈ X(t) and y ∈ Y , the function θ 7→
L(t, x0 + θ(xt − x0), y) : [0, 1] → R is absolutely continuous. This implies
that for almost all θ the derivative exists and is equal to dxL(t, x0 + θ(xt −
x0), y;xt − x0) and it is the integral of its derivative. In particular

L(t, xs, y) = L(t, x0, y) +

∫ 1

0

dxL(t, x
0 + θ(xt − x0), y;xt − x0) dθ.

(ii) For all t ∈ [0, τ ], x0 ∈ X(0), xt ∈ X(s) and y ∈ Y , ϕ ∈ X and for almost
all θ ∈ [0, 1], dxL(t, x0 + θ(xt − x0), y;ϕ) exists and the functions θ 7→
dxL(t, x

0 + θ(xt − x0), y;ϕ) belong to L1[0, 1].
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Definition 5.4. Given x0 ∈ X(0) and xt ∈ X(t), the averaged adjoint equation is:

Find yt ∈ Y ∀ ϕ ∈ X,

∫ 1

0

dxL(t, x
0 + θ(xt − x0), y;ϕ) dθ = 0.

and the set of solutions is noted Y (t, x0, xt). Clearly Y (0, x0, x0) reduces to the set of
standard adjoint states Y (0, x0) at t = 0.

Theorem 5.1. Consider the Lagrangian functional

(t, x, y) 7→ L(t, x, y) : [0, τ ]×X × Y → R, τ > 0,

where X and Y are vector spaces and the function y 7→ L(t, x, y) is affine. Assume
that

(H0) and the following hypotheses are satisfied.
(H1) for all t ∈ [0, τ ], g(t) is finite,X(t) = {xt} and Y (0, x0) = {p0} are singletons,
(H2) dtL(0, x0, y0) exists,
(H3) The following limit exists

R(x0, y0) = lim
t→0+

∫ 1

0

dxL

(
t, x0 + θ(xt − x0), p0;

xt − x0

t

)
dθ.

Then, dg(0) exists and dg(0) = dtL(0, x
0, p0) +R(x0, p0).

Proof. See [8,9]. □

Corollary 5.1. Consider the Lagrangian functional

(t, x, y) 7→ L(t, x, y) : [0, τ ]×X × Y → R, τ > 0,

where X and Y are vector spaces and the function y 7→ L(t, x, y) is affine. Assume
that

(H0) and the following assumptions are satisfied:
(H1a) for all t ∈ [0, τ ], X(s) ̸= ∅, g(t) is finite, and for each x ∈ X(0), Y (0, x) ̸= ∅,
(H2a) for all x ∈ X(0) and p ∈ Y (0, x) dtL(0, x, p) exists,
(H3a) there exist x0 ∈ X(0) and p0 ∈ Y (0, x0) such that the following limit exists

R(x0, p0) = lim
t→0+

∫ 1

0

dxL

(
t, x0 + θ(xt − x0), p0;

xt − x0

t

)
dθ.

Then, dg(0) exists and there exist x0 ∈ X(0) and p0 ∈ Y (0, x0) such that dg(0) =
dtL(0, x

0, p0) +R(x0, p0).
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In what follows, we are interested in the main result of the topological derivative
of the functional. For more information on this part, the reader can consult the
papers of [8,9,27].

5.2. The topological derivative of the functional. Let us consider the function-
nal defined in Ωt by

(5.7) F (Ωt) =
C(N, s)

2

∫
RN

∫
RN

| uΩ(x)− uΩ(y) |p−2 (uΩ(x)− uΩ(y))

| x− y |N+ps
dxdy.

where uΩt be the solution to the following p- laplacian operator

(5.8)


(−∆)spu = f in Ωt,

u = 0 on RN \ Ωt,

p ≥ 2.

Let us consider as shape functional F define by

(5.9) F (Ω) =
C(N, s)

2

∫
RN

∫
RN

| uΩ(x)− uΩ(y) |p−2 (uΩ(x)− uΩ(y))

| x− y |N+ps
dxdy

and uΩ ∈ W s,p(Ω) is solution to the variational problem∫
R2N

| uΩ(x)− uΩ(y) |p−2 (uΩ(x)− uΩ(y))(vΩ(x)− vΩ(y))

| x− y |N+ps
dxdy

=

∫
Ω

f(x)vΩ(x)dx ∀v ∈ W s,p(Ω).

(5.10)

We aim to compute the topological derivative of the functional F (Ωt)

dF = lim
t−→0

F (Ωt)− F (Ω)

αN−drN−d
.

Thus, the Lagrangian dependent on t will be written in the form:

L(t, ϕ,Φ) =
C(N, s)

2

∫
RN

∫
RN

| uΩ(x)− uΩ(y) |p−2 (uΩ(x)− uΩ(y))

| x− y |N+ps
dxdy

+

∫
RN

∫
RN

| uΩ(x)− uΩ(y) |p−2 (uΩ(x)− uΩ(y))(vΩ(x)− vΩ(y))

| x− y |N+ps
dxdy

−
∫
Ω

f(x)vΩ(x)dx
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This can be rewritten as

L(t, ϕ,Φ)

=
C(N, s)

2

∫
RN

∫
RN

(−1)p−2 [uΩ(x)− uΩ(y)]
p−2 (uΩ(x)− uΩ(y))

| x− y |N+ps
dxdy

+

∫
RN

∫
RN

(−1)p−2 [uΩ(x)− uΩ(y)]
p−2 (uΩ(x)− uΩ(y))(vΩ(x)− vΩ(y))

| x− y |N+ps
dxdy

−
∫
Ω

f(x)vΩ(x)dx

F (Ωt) = inf
ϕ∈W s,p

0 (Ω)
sup

Φ∈W s,p
0 (Ω)

L(t, ϕ,Φ).

From this, we can now evaluate the derivative of the Lagrangian, dependent on t,
with respect to ϕ:

dϕL(t, ϕ,Φ, ϕ
′)

=
C(N, s)

2

∫
R2N

(p− 2) (ϕ′(x)− ϕ′(y)) (−1)p−2 [ϕΩ(x)− ϕΩ(y)]
p−3 (ϕ(x)− ϕ(y))

| x− y |N+ps

+
C(N, s)

2

∫
R2N

(ϕ′(x)− ϕ′(y))(−1)p−2 [ϕΩ(x)− ϕΩ(y)]
p−2

|x− y|N+ps
dxdy

+

∫
R2N

(p− 2) (ϕ′(x)− ϕ′(y)) (−1)p−2 [ϕΩ(x)− ϕΩ(y)]
p−3 (ϕ(x)− ϕ(y)) (Φ(x))

| x− y |N+ps

−
∫
R2N

(p− 2) (ϕ′(x)− ϕ′(y)) (−1)p−2 [ϕΩ(x)− ϕΩ(y)]
p−3 (ϕ(x)− ϕ(y)) (Φ(y))

| x− y |N+ps

+

∫
R2N

(ϕ′(x)− ϕ′(y))(−1)p−2 [ϕΩ(x)− ϕΩ(y)]
p−2 (Φ(x)− Φ(y))

|x− y|N+ps
dxdy.

The initial adjoint state pΩ0 is a solution of dϕL(0, uΩ0 , pΩ0 , ϕ
′) = 0 for all ϕ′ for

t = 0. Thus the variational formulation of the adjoint equation of state is given by

C(N, s)

2

∫
R2N

(p− 2) (ϕ′(x)− ϕ′(y)) (−1)p−2 [uΩ0(x)− uΩ0(y)]
p−3 (uΩ0(x)− uΩ0(y))

| x− y |N+ps
dxdy

+

∫
R2N

(ϕ′(x)− ϕ′(y))(−1)p−2 [uΩ0(x)− uΩ0(y)]
p−2

|x− y|N+ps
dxdy

+

∫
R2N

(p− 2) (ϕ′(x)− ϕ′(y)) (−1)p−2 [uΩ0(x)− uΩ0(y)]
p−3

| x− y |N+ps

· (uΩ0(x)− uΩ0(y)) (pΩ0(x)− pΩ0(y)) dxdy
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+

∫
R2N

(ϕ′(x)− ϕ′(y))(−1)p−2 [uΩ0(x)− uΩ0(y)]
p−2 (pΩ0(x)− pΩ0(y))

|x− y|N+ps
dxdy = 0.

And we have∫
R2N

[
(p− 2) (ϕ′(x)− ϕ′(y)) (−1)p−2 [uΩ0(x)− uΩ0(y)]

p−3 (uΩ0(x)− uΩ0(y))
]

| x− y |N+ps

· [pΩ0(x)− pΩ0(y)] dxdy

+

∫
R2N

[
(p− 2) (ϕ′(x)− ϕ′(y)) (−1)p−2 [uΩ0(x)− uΩ0(y)]

p−3 (uΩ0(x)− uΩ0(y))
]

| x− y |N+ps

·
[
C(N, s)

2

]
dxdy

+

∫
R2N

(ϕ′(x)− ϕ′(y))(−1)p−2 [uΩ0(x)− uΩ0(y)]
p−2 [(pΩ0(x)− pΩ0(y)) + 1]

|x− y|N+ps
dxdy = 0.

And finally it can be rewritten in the following form∫
R2N

[
(p− 2) (ϕ′(x)− ϕ′(y)) (−1)p−2 [uΩ0(x)− uΩ0(y)]

p−3 (uΩ0(x)− uΩ0(y))
]

| x− y |N+ps

·
[
C(N, s)

2

]
dxdy

+

∫
R2N

[
(p− 2) (ϕ′(x)− ϕ′(y)) (−1)p−2 [uΩ0(x)− uΩ0(y)]

p−3 (uΩ0(x)− uΩ0(y))
]

| x− y |N+ps

· [pΩ0(x)− pΩ0(y)] dxdy

+

∫
R2N

(ϕ′(x)− ϕ′(y)) | uΩ0(x)− uΩ0(y) |p−2 [(pΩ0(x)− pΩ0(y)) + 1]

|x− y|N+ps
dxdy = 0.

Next, we derive the Lagrangian with respect to Φ:

dΦL(t, ϕ,Φ,Φ
′)

=

∫
RN

∫
RN

| ϕΩ(x)− ϕΩ(y) |p−2 (ϕΩ(x)− ϕΩ(y))(Φ
′(x)− Φ′(y))

|x− y|N+ps
dxdy

−
∫
Ωt

f(x)Φ′(x)dx.

The initial state uΩ0 is a solution of dΦL(0, uΩ0 , 0,Φ
′
Ω0
) = 0 ∀ Φ′

Ω0
∈ W s,p(Ω) and in

this case, we have:
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∫
RN

∫
RN

| uΩ0(x)− uΩ0(y) |p−2 (uΩ0(x)− uΩ0(y))(Φ
′(x)− Φ′(y))

|x− y|N+ps
dxdy

−
∫
Ωt

f(x)Φ′(x)dx = 0.

And we have∫
RN

∫
RN

| uΩ0(x)− uΩ0(y) |p−2 (uΩ0(x)− uΩ0(y))(Φ
′(x)− Φ′(y))

|x− y|N+ps
dxdy

=

∫
Ωt

f(x)Φ′(x)dx,

L(t, ϕ,Φ)− L(0, ϕ,Φ) =

∫
Ωt

f(x)Φ(x)dx−
∫
Ω

f(x)Φ(x)dx,

L(t, ϕ,Φ)− L(0, ϕ,Φ) =

∫
Ωt

f(x)Φ(x)dx−
∫
Et

f(x)Φ(x)dx−
∫
Ωt

f(x)Φ(x)dx,

L(t, ϕ,Φ)− L(0, ϕ,Φ) = −
∫
Et

f(x)Φ(x)dx,

dsL(0, ϕ,Φ) = − lim
s−→0

1

|B(x0, s)|

[∫
B(x0,s)

f(x)Φ(x)

]
dx,

dsL(0, ϕ,Φ) = −f(x0)Φ(x0).

We will now define R(t) by

R(t) =

∫ 1

0

dϕL

(
t, uΩ0 +Ψ(uΩt − uΩ0) , pΩ0 ,

(
uΩt − uΩ0

t

))
dΨ.

By substituting ϕ′ =
uΩt−uΩ0

t
and Ψ =

uΩt−uΩ0

2
into the adjoint equation for pΩ0, we

obtain:

R(t) =

∫
R2N

C(N, s)(p− 2)
∣∣∣(uΩt−uΩ0

t

)
(x)−

(
uΩt−uΩ0

t

)
(y)
∣∣∣

2 | x− y |N+ps

·
∣∣∣∣(uΩt + uΩ0

2

)
(x)−

(
uΩt + uΩ0

2

)
(y)

∣∣∣∣p−2

dxdy
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+

∫
R2N

C(N, s)
∣∣∣(uΩt−uΩ0

t

)
(x)−

(
uΩt−uΩ0

t

)
(y)
∣∣∣

2 | x− y |N+ps

·
∣∣∣∣(uΩt + uΩ0

2

)
(x)−

(
uΩt + uΩ0

2

)
(y)

∣∣∣∣p−2

dxdy

+

∫
R2N

∣∣∣(uΩt−uΩ0

t

)
(x)−

(
uΩt−uΩ0

t

)
(y)
∣∣∣ ∣∣∣(uΩt+uΩ0

2

)
(x)−

(
uΩt+uΩ0

2

)
(y)
∣∣∣p−2

| x− y |N+ps

· [(p− 2)pΩ0(x)] dxdy

+

∫
R2N

∣∣∣(uΩt−uΩ0

t

)
(x)−

(
uΩt−uΩ0

t

)
(y)
∣∣∣ ∣∣∣(uΩt+uΩ0

2

)
(x)−

(
uΩt+uΩ0

2

)
(y)
∣∣∣p−2

| x− y |N+ps

· [−(p− 2)pΩ0(y)]

+

∫
R2N

∣∣∣(uΩt−uΩ0

t

)
(x)−

(
uΩt−uΩ0

t

)
(y)
∣∣∣ ∣∣∣(uΩt+uΩ0

2

)
(x)−

(
uΩt+uΩ0

2

)
(y)
∣∣∣p−2

| x− y |N+ps

· (pΩ0(x)− pΩ0(y)) dxdy.

Theorem 5.2. Let 0 ≤ d < N,E. Verify Hypothesis H1 and t = αN−dr
N−d. The

topological derivative exists if the function R(t) has a finite limit. Therfore, the
topological derivative of the function is given by the expression:

dF = lim
t−→0

F (Ωt)− F (Ω)

αN−drN−d
, dF = R(x0, pΩ0)− f(x0) pΩ0(x0).

where pΩ0 , uΩ0 are solutions of systems∫
R2N

[
(p− 2) (ϕ′(x)− ϕ′(y)) (−1)p−2 [uΩ0(x)− uΩ0(y)]

p−3 (uΩ0(x)− uΩ0(y))
]

| x− y |N+ps

·
[
C(N, s)

2

]
dxdy

+

∫
R2N

[
(p− 2) (ϕ′(x)− ϕ′(y)) (−1)p−2 [uΩ0(x)− uΩ0(y)]

p−3 (uΩ0(x)− uΩ0(y))
]

| x− y |N+ps

· [pΩ0(x)− pΩ0(y)] dxdy

+

∫
R2N

(ϕ′(x)− ϕ′(y)) | uΩ0(x)− uΩ0(y) |p−2 [(pΩ0(x)− pΩ0(y)) + 1]

|x− y|N+ps
dxdy = 0.
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6. CONCLUSION AND PERSPECTIVES

The present work deals with topological optimization for a fractional p-Laplacian
operator problem. We first looked at the existence of weak solutions for the frac-
tional p-Laplacian problem, a part that was essential in the topological derivative
part for the application of the theorems used. Next we established the existence of
optimal forms, but using the ϵ− cône property. The topological derivative follows,
using the minmax method.

In what follows, we plan not only to carry out numerical simulations, but also
to give a generalization of the problem studied by combining both the shape de-
rivative and the topological derivative.
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