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NUMERICAL INVESTIGATION OF SOME NONLINEAR KDV EQUATIONS
USING EXTENDED JACOBIAN ELLIPTIC FUNCTION EXPANSION

METHOD

Laila A. Alnaser

ABSTRACT. In this paper, we investigate the Jacobian elliptic functions and give a clear
definitions and properties of these functions. Some exact solutions for modified KdV
equations are given by using the extended Jacobian elliptic function expansion method.
Then, we compute some numerical solutions using semi Finite and finite difference meth-
ods. Stability of the numerical solutions are proved which prove the efficiently of these
numerical solutions for such nonlinear partial differential equations.

1. INTRODUCTION

Nonlinear partial differential equations (NLPDEs) appear and have an essential role in
addressing the problems in the physics of non-linear waves. We find NLPDEs in fluid
dynamics [6, 14, 26], electromagnetic physics [15, 30], nonlinear optics [3, 9, 38], fluid
mechanics [10, 12] etc.

In addition, a lot of methods are used to find exact solutions for NLPDEs. As examples,
we can cite exp-function method [4, 11], the Riccati-Bernoulli sub-ODE method [2, 37],
F -expansion method [28,40], sine-cosine method [34,35], homogeneous balance method
[8, 31], Jacobi elliptic functions method [5, 19], tanh- method [21, 33], extended tanh-
method [7, 36] and G/G′-expansion method [32, 39].
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We consider, in this paper, the mKdV equations

(1.1) ut + αu2ux − βuxxx = 0.

The above equations arise in many domains as hyperbolic surfaces, ion acoustic solitons,
slagmetallic bath interfaces, meandering ocean jets, dynamics of thin elastic rods, phonon
in enharmonic lattices, traffic congestion, Schottky barrier transmission lines and Alfvén
waves in collisionless plasmas [1, 13, 17, 20, 22, 24, 25, 27, 29, 41].

We use the extended Jacobian elliptic function expansion method (EJEFEM) to find
exact solutions for the equations (1.1). We define these functions and explain the method-
ology of the method.

Numerical solutions are investigated to the equations (1.1), we use semi finite differ-
ence and finite differences methods [16, 23]. By studying the stability and analyzing the
errors, we prove that the finite difference methods are practical and give a numerical so-
lutions that converges to the exact ones.

The outlines of this paper are as follows. In section 2 we recall the Jacobian elliptic
functions and describe the EJEFEM methodology. Section 3 is avoided to apply the EJE-
FEM method and find some exact solutions to the equation (1.1). In part 4, we apply the
semi finite difference method to give numerical solution for the problem with Neumann
boundary conditions. Section 5 is left to study the stability and section 6 for the errors.
Finally, we give some conclusions and perspectives.

2. THE EXTENDED JACOBIAN ELLIPTIC FUNCTION EXPANSION METHOD

In this section, we describe the extended Jacobian elliptic function expansion method
(EJEFEM). For more details and other properties of the elliptic Jacobian functions, we
can refer to [5, 18, 19]. The EJEFEM method can be used to find exact solutions for
partial differential equations of the form

(2.1) H(u(x, t), ut(x, t), ux(x, t), utt(x, t), uxx(x, t), uxt(x, t), . . .) = 0,

where H is a partial differential equation where the unknown function is u(t, x) with two
variables x and t.

First, we apply the transformation

(2.2) η = k(x+ wt) and u = v(η)
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to write the equation (2.1) as

(2.3) G(v, v′, v′′, v(3), · · · ) = 0.

Next, we look for an exact solution of equation (2.3) on the form

(2.4) v(η) = a0 +
N∑
j=1

f j−1
i (η)

[
ajfi(η) + bjgi(η)

]
, i = 1, 2, 3 · · ·

with aj , bj are in R and

f1(η) = snη, g1(η) = cnη, f2(η) = snη, g2(η) = dnη,

f3(η) = nsη, g3(η) = csη, f4(η) = nsη, g4(η) = dsη,

f5(η) = scη, g5(η) = ncη, f6(η) = sdη, g6(η) = ndη,(2.5)

where snη = sn(η,m) and cnη = cn(η,m), 1 < m < 1, are the Jacobian elliptic sine
and cosine functions and dnη = dn(η,m) is the third kind jacobian elliptic function. The
other functions are defined as

ns(η,m) =
1

sn(η,m)
, nc(η,m) =

1

cn(η,m)
, nd(η,m) =

1

dn(η,m)
,

sc(η,m) =
sn(η,m)

cn(η,m)
, sd(η,m) =

sn(η,m)

dn(η,m)
, ds(η,m) =

dn(η,m)

sn(η,m)
,

cs(η,m) =
cn(η,m)

sn(η,m)
.

These Jacobian functions satisfy sn2η+cn2η = 1 and dn2η+m2sn2η = 1. We have

sn′η = cnη dnη, cn′η = −snη dnη, dn′η = −m2snη cnη, ns′η = −csη dsη,

nc′η = scη dcη, nd′η = m2sdη cdη, cs′(u) = −ns(u)ds(u),

sc′(u) = nc(u)dc(u), ds′(u) = −cs(u) ns(u), sd′(u) = cd(u) nd(u).

We see that the degree of the function v given by (2.4) is D(v) = N , however the
degree of v′ is D(v′) = N + 1.

3. EXACT SOLUTIONS

In this subsection, we give an exact solution of the equation

(3.1) ut + αu2ux − βuxxx = 0,
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using the EJEFEM method.
Using the transformation η = k(x + wt) and u = u(x, t) = v(η), the equation (3.1)

becomes

(3.2) wv′ + αv2v′ − βk2v(3) = 0.

We integrate the equation (3.2) and we take the integral constant be equal to zero, we get

(3.3) wv +
α

3
v3 − βk2v′′ = 0.

Using (2.4) and balancing the degree of the non linear term v3 with the degree of v′′, we
get 3N = N + 2 and so N = 1. We have

(3.4) v(η) = a0 + a1sn(η) + b1cn(η).

Therefore,
v′(η) = a1cn(η)dn(η)− b1sn(η)dn(η),

and

v′′(η) = −a1sn(η)dn
2(η)− a1m

2cn2(η)sn(η)− b1cn(η)dn
2(η) + b1m

2sn2(η)cn(η).

Using the relationships of elliptic Jacobian functions, we obtain

v′′(η) =− a1sn(η)− a1m
2sn(η) + 2a1m

2sn3(η)

−b1cn(η) + 2b1m
2cn(η)sn2(η).(3.5)

Now,

(3.6) v2 = a20+b21+2a0b1cn(η)+2a0a1sn(η)+2a1b1cn(η)sn(η)+a21sn
2(η)−b21sn

2(η)

and

v3 =a30 + 3a0b
2
1 + 3a20b1cn(η) + b31cn(η) + 3a20a1sn(η) + 3a1b

2
1sn(η)

+6a0a1b1cn(η)sn(η) + 3a0a
2
1sn

2(η)− 3a0b
2
1sn

2(η) + 3a21b1cn(η)sn
2(η)

−b31cn(η)sn
2(η) + a31sn

3(η)− 3a1b
2
1sn

3(η).(3.7)

Replacing v, v′′ and v3 in the equation (3.3) by their values using (3.4), (3.5) and (3.7) we
get an equation of the form

(3.8)
3∑

i=0

Li,0sn
i(η) + Li,1sn

i(η)cn(η) = 0,
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where
L0,0 = a0w + (1/3)a30α + a0b

2
1α,

L0,1 = b1w + a20b1α + (1/3)b31α + b1k
2β,

L1,0 = a1w + a20a1α + a1b
2
1α + a1k

2β + a1k
2m2β,

L1,1 = 2a0a1b1α,

L2,0 = a0a
2
1α− a0b

2
1α,

L2,1 = a21b1α− (1/3)b31α− 2b1k
2m2β,

L3,0 = (1/3)a31α− a1b
2
1α− 2a1k

2m2β,

L3,1 = 0.

Such that the functions 1, cn, sn, sn cn, sn2, sn2 cn, sn3, sn3 cn are linearly independent,
all the coefficients of the equation (3.7) are equal to zero. By using Wolfram Mathematica
package, we get

a0 → 0, a1 → ±km
√
6β√
α

,

b1 → 0,

w → −k2(1 +m2)β.

A family of solutions is given by

(3.9) u(x, t) = a1sn(k(x+ wt)).

As long as m → 1, a second family of solutions is

(3.10) u(x, t) = −k

√
6β

α
tanh(k(x− x0)− 2k3βt).

and also,

(3.11) u1(x, t) = k

√
6β

α
tanh(k(x− x0)− 2k3βt).

is a family of solutions of the equation (3.7).

The exact solution obtained in (3.10) is represented in Figure 1 with α = 1, β = 0.1,
k = 2, T = 3 and x0 = 2 in the interval [0, 10]. In order to see the time changes for the
exact solution, we consider t = 0, 0.75, 1.5, 2.25 and t = 3.
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FIGURE 1. Illustration of the time evolution for u(x, t) solution of the
equation (3.1) with α = 1, β = 0.1, k = 2 and b = 10

4. NUMERICAL RESULTS

In this section, we explore the numerical results of the equation

(4.1)

 ut + αu2ux − βuxxx = 0,

x ∈ [0, b] and t ∈ [0, T ].

We use centered finite differences method to discretize the spatial derivatives, however
the temporal derivative is kept continuous and as initial conditions we take

(4.2) u(x, o) = −k

√
6β

α
tanh(kx),

where k a positive constant. Such that the solution tends to zero at the end points of the
physical domain, we take ux = 0 and uxxx = 0 as x → ±∞. So, we can suppose that

(4.3) ux(0, t) = uxxx(0, t) = 0 for all t ∈ [0, T ],

and

(4.4) ux(b, t) = uxxx(b, t) = 0, for all t ∈ [0, T ]
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as boundary conditions.
The finite differences method consists to replace the derivatives by some differences.

For this, let J > 0 an integer, ∆x =
b

J
and xj = (j − 1) ∆x, j = 1, · · · , J + 1. This

means, we divided the domain [0, b] to J equal subintervals.

For N > 0, we denote ∆t =
T

N
and tn = n ∆t, n = 0, · · · , N .

From Taylor’s formula, the centered difference for the space is given by

(4.5)
∂u

∂x
(x, t) ≈ u(x+∆x, t)− u(x−∆x, t)

2∆x

and

(4.6)
∂2u

∂x2
(x, t) ≈ u(x+∆x, t)− 2u(x, t) + u(x−∆x, t)

(∆x)2
·

So, when we discretize the equation (4.1), we get at each point (xj, t):

(4.7)


ut,j + αu2

j(
uj+1 − uj−1

2∆x
)− β(

uxx,j+1 − uxx,j−1

2∆x
) = 0,

uxx,j =
uj+1 − 2uj + uj−1

(∆x)2
·

Therefore,

ut |nj = −α (un+1
j )2

(un+1
j+1 − un+1

j−1 )

2∆x

+
β

2∆x

(un+1
j+2 − 2un+1

j+1 + un+1
j )− (un+1

j − 2un+1
j−1 + un+1

j−2 )

(∆x)2
.

(4.8)

Denote r1 =
1

2∆x
and r2 =

1

2(∆x)3
. The equation (4.8) gives

(4.9) ut |nj= −α r1 (u
n+1
j )2(un+1

j+1 − un+1
j−1 ) + β r2(u

n+1
j+2 − 2un+1

j+1 + 2un+1
j−1 − un+1

j−2 ),

∀ 3 ≤ j ≤ J − 1, 0 ≤ n ≤ N − 1.

Approximating (4.2) directly gives

(4.10) u0
j = fj = −k

√
6β

α
tanh(kxj), ∀ 1 ≤ j ≤ J + 1.

Approximating (4.3) by central difference, we have

u(0 + ∆x, t)− u(0−∆x, t)

2∆x
= 0 and

uxx(0 + ∆x, t)− uxx(0−∆x, t)

2∆x
= 0
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and so,

(4.11) un
0 = un

2 and un
xx,0 = un

xx,2, ∀ 0 ≤ n ≤ N.

From (4.11), we get
un
1 − 2un

0 + un
−1

(∆x)2
=

un
3 − 2un

2 + un
1

(∆x)2
·

Therefore,

(4.12) un
0 = un

2 and un
−1 = un

3 .

Next, approximating the right boundary condition (4.4) by central difference, we have

u(b+∆x, t)− u(b−∆x, t)

2∆x
= 0

and
fracuxx(b+∆x, t)− uxx(b−∆x, t)2∆x = 0.

That is,

(4.13) un
J+2 = un

J and un
xx,J+2 = un

xx,J .

Hence,
un
J+3 − 2un

J+2 + un
J+1

(∆x)2
=

un
J+1 − 2un

J + un
J−1

(∆x)2
·

Using (4.13) again, we obtain

(4.14) un
J+2 = un

J and un
J+3 = un

J−1.

Therefore the scheme of the problem (4.1) is given by

(4.15) ut |nj= −α r1 (u
n+1
j )2(un+1

j+1 − un+1
j−1 ) + β r2(u

n+1
j+2 − 2un+1

j+1 + 2un+1
j−1 − un+1

j−2 ),

for all 3 ≤ j ≤ J − 1 and 0 ≤ n ≤ N − 1 where r1 =
1

2∆x
and r2 =

1

2(∆x)3
and from

the boundary conditions, we obtain

(4.16)

{
un
0 = un

2 , un
−1 = un

3 ,

un
J+2 = un

J , un
J+3 = un

J−1.

Figures 2 and 3 show the exact and numerical solutions of the implementation of the
spatial finite difference method with α = 1, β = 0.1, k = 2, T = 3, b = 10 and x0 = 2.
Figure 2 represent the numerical solution vs the exact one at different times in the time
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domain [0, 3] and Figure 3 illustrate the two solutions in 3D. In the figures, we remark the
coherence of the two solutions.

FIGURE 2. Comparison of the two solutions of the equation (3.1) with
α = 1, β = 0.1, k = 2 and b = 10 and for different times

FIGURE 3. Illustration of the two solutions, the exact and the numerical,
of the equation (3.1) with α = 1, β = 0.1, k = 2 and b = 10 in 3D
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5. VON NEUMANN STABILITY ANALYSIS

In order to use the the von Neumann analysis to study the stability of the scheme (4.11),
we consider the following linear approach of the equation (1.1).

(5.1) ut + sux − βuxxx = 0,

where s = αu2. We set

un
j = λneikj∆x, where λ = λ(k).

We have
un+1
j = λn+1eikj∆x = λun

j ;

un
j+1 = λneik(j+1)∆x = eik∆xun

j ;

un
j+2 = λneik(j+2)∆x = e2ik∆xun

j ;

un
j−1 = λneik(j−1)∆x = e−ik∆xun

j ;

un
j−2 = λneik(j−2)∆x = e−2ik∆xun

j .

The scheme of the equation (5.1) at a grid point (xj, t
n) and using backward finite differ-

ence for the time derivative is

(5.2) un
j = un+1

j − s r1(u
n+1
j+1 − un+1

j−1 ) + β r2 (u
n+1
j+2 − 2un+1

j+1 + 2un+1
j−1 − un+1

j−2 ).

Therefore,

un
j = λ

(
un
j − s r1(e

ik∆x − e−ik∆x)un
j + β r2(e

2ik∆x − e−2ik∆x)un
j

− 2β r2(e
ik∆x − e−ik∆x)un

j

)
.

So, we get

1 = λ
(
1− 2s r1 i sin(k∆x) + 2β r2 i sin(2k∆x)− 4β r2 i sin(k∆x)

)
.

Since r1 =
∆t

2∆x
and r2 =

∆t

2(∆x)3
, we obtain

1 = λ
(
1− s

∆t

∆x
i sin(k∆x) + β

∆t

(∆x)3
i sin(2k∆x)− 2β

∆t

(∆x)3
i sin(k∆x)

)
.

That is,

(5.3) 1 = λ(1− i δ)



NUMERICAL INVESTIGATION OF SOME NONLINEAR KDV EQUATIONS 385

where δ = s
∆t

∆x
sin(k∆x)+β

∆t

(∆x)3
sin(2k∆x)−2β

∆t

(∆x)3
sin(k∆x). From the equation

(5.3), we get

|λ|2 = 1

1 + δ2
≤ 1.

We deduce that the condition of the stability is unconditionally satisfied.

6. ERROR ANALYSIS

In order to confirm the accuracy of the numerical scheme (5.2), we study the truncation
error by Taylor’s expansions method. First let

(6.1) en+1
j = un+1

j − u(xj, t
n+1)

the error, where un+1
j the approximative solution and u(xj, t

n+1) the exact one on the grid
points.

Second, we write (5.2) in the following way

(6.2)
un
j − un+1

j

∆t
= − s

2∆x

(
un+1
j+1 − un+1

j−1

)
+

β

2(∆x)3

(
un+1
j+2 − 2un+1

j+1 +2un+1
j−1 − un+1

j−2

)
.

We set T n+1
j the truncation error. It represent the difference between the two sides of the

equation (6.2), when we replaced un+1
j by u(xj, t

n+1). This means T n+1
j quantifies the

difference between the exact equation and its numerical approximation and we have

T n+1
j =

u(xj, t
n)− u(xj, t

n+1)

∆t
+

s

2∆x

(
u(xj+1, t

n+1)− u(xj−1, t
n+1)

)
− β

2(∆x)3

(
u(xj+2, t

n+1)− 2u(xj+1, t
n+1) + 2u(xj−1, t

n+1)− u(xj−2, t
n+1)

)
.(6.3)

Now, from (6.1), we have un+1
j = en+1

j + u(xj, t
n+1). When we substitute un+1

j into the
numerical scheme (6.2) and use (6.3), we get the error equation

(6.4)
enj − en+1

j

∆t
= T n+1

j +
s

2∆x
(en+1

j+1 −en+1
j−1 )−

β

2(∆x)3
(en+1

j+2 −2en+1
j+1 +2en+1

j−1 −en+1
j−2 ).

But, if we denote

δxv(x, t) = v(x+
1

2
∆x, t)− v(x− 1

2
∆x, t)

for a function v(x, y), we have

δ2xv(x, t) =
(
v(x+∆x, t)− v(x, t)

)
−
(
v(x, t)− v(x−∆x, t)

)
.
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Therefore,
δ2xv(x, t) = v(x+∆x, t)− 2v(x, t) + v(x−∆x, t).

From (6.4), we get

(6.5)
enj − en+1

j

∆t
= T n+1

j +
s

2∆x
(en+1

j+1 − en+1
j−1 )−

β

2(∆x)3
δ2x(e

n+1
j+1 − en+1

j−1 ).

6.1. Truncation Error Analysis. Consider the truncation error given by the equation
(6.3) for the linearized equation ut + sux − βuxxx = 0.

First, for the numerical approximation for the time derivative
u(xj, t

n+1)− u(xj, t
n)

∆t
,

performing a Taylor series expansion around tn, we get

u(xj, t
n+1) = u(xj, t

n) + ∆t ut(xj, t
n) +

(∆t)2

2
utt(xj, t

n) +O(∆t3).

Then, we obtain

(6.6)
u(xj, t

n+1)− u(xj, t
n)

∆t
= ut(xj, t

n) +
∆t

2
utt(xj, t

n) +O(∆t2).

Thus, the time error is of order O(∆t).
Second, for the spatial error of ux, we have the approximation

u(xj+1, t
n+1)− u(xj−1, t

n+1)

2∆x
.

By expanding each term in a Taylor series around xj , we find

u(xj+1, t
n+1) = u(xj, t

n+1) + ∆x ux(xj, t
n+1) +

(∆x)2

2
uxx(xj, t

n+1) +O(∆x3)

and

u(xj−1, t
n+1) = u(xj, t

n+1)−∆x ux(xj, t
n+1) +

(∆x)2

2
uxx(xj, t

n+1) +O(∆x3)·

Hence,

(6.7)
u(xj+1, t

n+1)− u(xj−1, t
n+1)

2∆x
= ux(xj, t

n+1) +O(∆x2).

Therefore, the spatial error for ux is of order O(∆x2).
Finally, the approximation of the third spatial derivative uxxx is given by

u(xj+2, t
n+1)− 2u(xj+1, t

n+1) + 2u(xj−1, t
n+1)− u(xj−2, t

n+1)

2(∆x)3
·
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Since

u(xj+2, t
n+1) = u(xj, t

n+1) + 2∆x ux(xj, t
n+1) + 2(∆x)2uxx(xj, t

n+1)

+
4(∆x)3

6
uxxx(xj, t

n+1) +O(∆x4),

u(xj−2, t
n+1) = u(xj, t

n+1)− 2∆x ux(xj, t
n+1) + 2(∆x)2uxx(xj, t

n+1)

− 4(∆x)3

6
uxxx(xj, t

n+1) +O(∆x4),

we get

u(xj+2, t
n+1)− 2u(xj+1, t

n+1) + 2u(xj−1, t
n+1)− u(xj−2, t

n+1)(6.8)

=2(∆x)3uxxx(xj, t
n+1) +O(∆x5).

Therefore, the error for uxxx is of order O(∆x2).
We conclude that the total truncation error satisfies T n+1

j = O(∆t) +O(∆x2).

6.2. Relative error with L2 norm. In order to confirm the stability of our approximative
solution for the the nonlinear KdV equation of second order nonlinearity given by (1.1),
we will calculate the relative error with the L2 norm and the (CPU) time which indicates a
computer responsible for executing instructions and performing calculations. We consider
α = 1, β = 0.1, k = 2 and T = 3. We get the following table.

∆x Erreur Relative (L2) Temps CPU (s)
0.1500 1.0211e-01 0.1351
0.0750 4.0758e-02 0.6639
0.0375 2.9308e-02 0.4900
0.0187 1.1401e-01 3.2443
0.0094 5.6102e-02 12.4567

Through the above table, we remark that the error approaches zero whenever the value of
∆x, as spatial step size, is small. In addition, whenever ∆x decreases, the error gener-
ally decreases, indicating that the numerical method converges toward the exact solution.
However, for very small ∆x (e.g., 0.0187), the error slightly increases, which could be
due to numerical instability or accumulated rounding errors. The CPU time increases sig-
nificantly as ∆x becomes smaller, reflecting the higher computational cost of finer grids.
These results demonstrate the trade-off between accuracy and computational efficiency in
numerical simulations.
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7. CONCLUSION

In this paper, we use the extended Jacobian elliptic function expansion method to solve
some nonlinear KdV equations with nonlinearity of degree 2. After that, having exact
solutions, we solve these equations numerically by using the finite differences method
for the space variable and keeping the time continuous. We write the scheme taking
in consideration the initial condition and boundary conditions of type Neumann. We
compare the two solutions, exact and numerical, for the case α = 1, β = 0.1, k = 2

and T = 3, in different times (Fig. 2) and as functions on (x, t) (Fig. 3). For more
numerical investigation, we calculate the traduction errors which is of order O(∆t) +

O(∆x2). Finally, we calculate the L2-relative errors and compare the errors with the
values of ∆x.

We see and prove that the semi-finite differences method is suitable to this type of
nonlinear partial differential equations even if the the nonlinearity is of order 2.
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