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ON A NEW MULTI-DIMENSIONAL TWO-PARAMETER HARDY-HILBERT-TYPE
INTEGRAL INEQUALITY

Christophe Chesneau

ABSTRACT. This article investigates a new three-dimensional Hardy-Hilbert-type
integral inequality involving an exponential-ratio kernel function that is governed
by two parameters. An explicit upper bound is established, with the corresponding
constant factor expressed in terms of the gamma function. This result is then ex-
tended to a multi-dimensional setting to demonstrate the generality and analytical
flexibility of the proposed approach.

1. INTRODUCTION

The Hardy-Hilbert integral inequality is a classical and influential result in anal-
ysis, thoroughly studied in [8]. Over the years, numerous researchers have sought
to extend, refine, and generalize this inequality in various directions. A com-
prehensive overview of these developments is provided in the survey [3] and
the book [18]. Recent advances include the introduction of new forms, appli-
cations to diverse analytical contexts, and broader generalizations, as explored
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in [1,2,4–6,9–17]. These contributions collectively highlight the continuing rele-
vance and versatility of Hardy-Hilbert-type integral inequalities in modern analy-
sis.

A new variant of the Hardy-Hilbert integral inequality was introduced in [7].
It features a kernel function of the exponential-ratio type that depends on two
parameters and exhibits a decreasing behavior. One of the research directions
highlighted in [7] concerns extending this inequality to higher dimensions. In
particular, it is proposed investigating inequalities based on the following three-
dimensional integral analogue:∫ ∞

0

∫ ∞

0

∫ ∞

0

e−γ(x+y+z)

(x+ y + z)λ
f(x)g(y)h(z)dxdydz,

where γ > 0, λ ∈ (0, 2), and f, g, h are non-negative measurable functions that
satisfy suitable integrability conditions. In this article, we build upon this line of
research by deriving an explicit upper bound for this triple integral. The resulting
constant factor involves the gamma function. Furthermore, we extend the analysis
to a multi-dimensional setting to demonstrate the generality and flexibility of the
approach. We provide detailed proofs of the main results, emphasizing both the
analytical technique and the structural properties of the kernel function.

The remainder of the article is organized as follows: Section 2 presents the pre-
liminary notions and results required for our analysis. Section 3 is devoted to the
establishment of the main three-dimensional Hardy-Hilbert-type integral inequal-
ity. The corresponding multi-dimensional analogue is investigated in Section 4.
Finally, concluding remarks are provided in Section 5.

2. PRELIMINARIES

2.1. Gamma and beta functions, and Lp space. For the sake of clarity and con-
venience, we begin by recalling some classical special functions. First, the gamma
function is defined by

Γ(x) =

∫ ∞

0

tx−1e−tdt

for any x > 0.
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The beta function is defined by

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt =

∫ ∞

0

tx−1

(1 + t)x+y
dt =

Γ(x)Γ(y)

Γ(x+ y)

for any x, y > 0.
Note that, for any positive integer m, we have Γ(m) = (m− 1)!.
We also adopt standard notation from measure theory. Let (X,F , ν) be a mea-

sure space and let I ∈ F . For p ∈ (1,∞), we define

Lp(I) =

{
ν-measurable function f : I → R : ∥f∥pp =

∫
I

|f |pdν < ∞
}
.

Our focus will be on the case where X is the set of real numbers R, I = [0,∞),
and ν is the Lebesgue measure.

2.2. Basis theorem. For completeness and ease of reference, we recall the state-
ment of [7, Theorem 1] below.

Theorem 2.1. [7, Theorem 1] Let p, q > 1 satisfy 1/p + 1/q = 1, and f, g be non-
negative measurable functions such that f ∈ Lp([0,∞)) and g ∈ Lq([0,∞)). Let
λ ∈ (0, 1) and γ > 0. Then the following inequality holds:∫ ∞

0

∫ ∞

0

e−γ(x+y)

(x+ y)λ
f(x)g(y)dxdy ≤ Ξ∥f∥p∥g∥q,

where

Ξ = p−1/pq−1/qγλ−1Γ(1− λ).

The main difference between this inequality and the classical Hardy-Hilbert in-
tegral inequality is that it involves an exponential-ratio kernel function depending
on two parameters, rather than the simple ratio-sum kernel function 1/(x+y). This
modification introduces a decaying exponential weight, which enhances conver-
gence and allows for a richer class of integrable functions. We emphasize that the
gamma function is fundamental in the formulation of the constant factor. More-
over, the parameter value λ = 1 is omitted from the analysis, as it leads to diver-
gence in the gamma function term.
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3. THREE-DIMENSIONAL RESULT

Our main three-dimensional result is stated in the theorem below. We highlight
the originality of the kernel function and the explicit form of the constant factor,
which involves the gamma function.

Theorem 3.1. Let p, q, r > 1 satisfy 1/p+1/q+1/r = 1, and f, g, h be non-negative
measurable functions such that f ∈ Lp([0,∞)), g ∈ Lq([0,∞)), and h ∈ Lr([0,∞)).
Let λ ∈ (0, 2) and γ > 0. Then the following inequality holds:∫ ∞

0

∫ ∞

0

∫ ∞

0

e−γ(x+y+z)

(x+ y + z)λ
f(x)g(y)h(z)dxdydz ≤ Υ∥f∥p∥g∥q∥h∥r,

where

Υ =

(
p

p− 1

)1/p−1(
q

q − 1

)1/q−1(
r

r − 1

)1/r−1

γλ−2Γ(2− λ).

Proof. The change of variables u = t(x+ y+ z) and the use of the gamma function
yield

1

Γ(λ)

∫ ∞

0

tλ−1e−t(x+y+z)dt =
1

(x+ y + z)λ
1

Γ(λ)

∫ ∞

0

uλ−1e−udu =
1

(x+ y + z)λ
.

Hence, by the Fubini-Tonelli integral theorem, we have∫ ∞

0

∫ ∞

0

∫ ∞

0

e−γ(x+y+z)

(x+ y + z)λ
f(x)g(y)h(z)dxdydz

=
1

Γ(λ)

∫ ∞

0

tλ−1

∫ ∞

0

∫ ∞

0

∫ ∞

0

f(x)g(y)h(z)e−(γ+t)(x+y+z)dxdydzdt.(3.1)

Let us focus on the main triple integral with respect to x, y and z. By the separa-
bility of the involved functions, we have∫ ∞

0

∫ ∞

0

∫ ∞

0

f(x)g(y)h(z)e−(γ+t)(x+y+z)dxdydz

=

∫ ∞

0

f(x)e−(γ+t)xdx

∫ ∞

0

g(y)e−(γ+t)ydy

∫ ∞

0

h(z)e−(γ+t)zdz.(3.2)

Let us now bound each of these simple integrals. Let p∗, q∗, r∗ > 1 satisfy

1

p
+

1

p∗
= 1,

1

q
+

1

q∗
= 1,

1

r
+

1

r∗
= 1,
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so that
p∗ =

p

p− 1
, q∗ =

q

q − 1
, r∗ =

r

r − 1
.

Applying the Hölder integral inequality with the parameters p and p∗, we get∫ ∞

0

f(x)e−(γ+t)xdx ≤ ∥f∥p
(∫ ∞

0

e−p∗(γ+t)xdx

)1/p∗

= ∥f∥p[p∗(γ + t)]−1/p∗

= ∥f∥pp−1/p∗
∗ (γ + t)−1/p∗ .

Similarly, we have∫ ∞

0

g(y)e−(γ+t)ydy ≤ ∥g∥q
(∫ ∞

0

e−q∗(γ+t)ydy

)1/q∗

= ∥g∥q[q∗(γ + t)]−1/q∗

= ∥g∥qq−1/q∗
∗ (γ + t)−1/q∗

and ∫ ∞

0

h(z)e−(γ+t)zdz ≤ ∥h∥r
(∫ ∞

0

e−r∗(γ+t)zdz

)1/r∗

= ∥h∥r[r∗(γ + t)]−1/r∗

= ∥h∥rr−1/r∗
∗ (γ + t)−1/r∗ .

Multiplying these bounds and using

1

p∗
+

1

q∗
+

1

r∗
= 1− 1

p
+ 1− 1

q
+ 1− 1

r
= 3−

(
1

p
+

1

q
+

1

r

)
= 3− 1 = 2,

we obtain ∫ ∞

0

f(x)e−(γ+t)xdx

∫ ∞

0

g(y)e−(γ+t)ydy

∫ ∞

0

h(z)e−(γ+t)zdz

≤ ∥f∥p∥g∥q∥h∥rp−1/p∗
∗ q−1/q∗

∗ r−1/r∗
∗ (γ + t)−(1/p∗+1/q∗+1/r∗)

= ∥f∥p∥g∥q∥h∥rp−1/p∗
∗ q−1/q∗

∗ r−1/r∗
∗ (γ + t)−2.(3.3)

Combining Equations (3.1), (3.2) and (3.3), we get∫ ∞

0

∫ ∞

0

∫ ∞

0

e−γ(x+y+z)

(x+ y + z)λ
f(x)g(y)h(z)dxdydz

≤ 1

Γ(λ)

∫ ∞

0

tλ−1∥f∥p∥g∥q∥h∥rp−1/p∗
∗ q−1/q∗

∗ r−1/r∗
∗ (γ + t)−2dt

=

(
1

Γ(λ)
p−1/p∗
∗ q−1/q∗

∗ r−1/r∗
∗

∫ ∞

0

tλ−1(γ + t)−2dt

)
∥f∥p∥g∥q∥h∥r.(3.4)
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Let us now focus on the simple integral with respect to t. Changing the variables
u = t/γ and using standard properties of the beta and gamma functions, we have∫ ∞

0

tλ−1(γ + t)−2dt = γλ−2

∫ ∞

0

uλ−1(1 + u)−2du = γλ−2B(λ, 2− λ)

= γλ−2Γ(λ)Γ(2− λ)

Γ(2)
= γλ−2Γ(λ)Γ(2− λ).(3.5)

Combining Equations (3.4) and (3.5), simplifying Γ(λ) and using the expres-
sions of p∗, q∗ and r∗, we obtain∫ ∞

0

∫ ∞

0

∫ ∞

0

e−γ(x+y+z)

(x+ y + z)λ
f(x)g(y)h(z)dxdydz

≤
(

1

Γ(λ)
p−1/p∗
∗ q−1/q∗

∗ r−1/r∗
∗ γλ−2Γ(λ)Γ(2− λ)

)
∥f∥p∥g∥q∥h∥r

=

((
p

p− 1

)1/p−1(
q

q − 1

)1/q−1(
r

r − 1

)1/r−1

γλ−2Γ(2− λ)

)
∥f∥p∥g∥q∥h∥r

= Υ∥f∥p∥g∥q∥h∥r,

which completes the proof. □

Therefore, Theorem 3.1 establishes a new three-dimensional Hardy-Hilbert-type
integral inequality with an exponential-ratio kernel function. The constant factor
Υ depends explicitly on the gamma function, the decay parameters λ and γ, and
the exponents p, q, r, reflecting the balance between the singularity at the origin
and the exponential decay at infinity.

In the simple case where λ = 1 ∈ (0, 2), Theorem 3.1 reduces to∫ ∞

0

∫ ∞

0

∫ ∞

0

e−γ(x+y+z)

x+ y + z
f(x)g(y)h(z)dxdydz ≤ Υ∥f∥p∥g∥q∥h∥r,

where

Υ =

(
p

p− 1

)1/p−1(
q

q − 1

)1/q−1(
r

r − 1

)1/r−1

γ−1.
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4. MULTI-DIMENSIONAL RESULT

Our main multi-dimensional result is presented in the theorem below. As in
Theorem 3.1, we highlight the originality of the kernel function and the explicit
form of the constant factor, which involves the gamma function.

Theorem 4.1. Let n ∈ N\{0, 1}, p1, . . . , pn > 1 satisfy
∑n

i=1 1/pi = 1 and f1, . . . , fn

be non-negative measurable functions such that, for any i = 1, . . . , n, fi ∈ Lpi([0,∞)).
Let λ ∈ (0, n− 1) and γ > 0. Then the following inequality holds:∫ ∞

0

. . .

∫ ∞

0

e−γ
∑n

i=1 xi

(
∑n

i=1 xi)
λ
f1(x1) . . . fn(xn)dx1 . . . dxn ≤ Ω∥f1∥p1 . . . ∥fn∥pn ,

where

Ω =

(
p1

p1 − 1

)1/p1−1

. . .

(
pn

pn − 1

)1/pn−1

γλ−(n−1) 1

(n− 2)!
Γ(n− 1− λ).

Proof. The proof follows the same main lines to that of Theorem 3.1. The change
of variables u = t (

∑n
i=1 xi) and the use of the gamma function yield

1

Γ(λ)

∫ ∞

0

tλ−1e−t
∑n

i=1 xidt =
1

(
∑n

i=1 xi)
λ

1

Γ(λ)

∫ ∞

0

uλ−1e−udu =
1

(
∑n

i=1 xi)
λ
.

Hence, by the Fubini-Tonelli integral theorem, we have∫ ∞

0

. . .

∫ ∞

0

e−γ
∑n

i=1 xi

(
∑n

i=1 xi)
λ
f1(x1) . . . fn(xn)dx1 . . . dxn

=
1

Γ(λ)

∫ ∞

0

tλ−1

∫ ∞

0

. . .

∫ ∞

0

f1(x1) . . . fn(xn)e
−(γ+t)

∑n
i=1 xidx1 . . . dxndt.(4.1)

Let us focus on the main multi-dimensional integral with respect to x1, . . . , xn. By
the separability of the involved functions, we have∫ ∞

0

. . .

∫ ∞

0

f1(x1) . . . fn(xn)e
−(γ+t)

∑n
i=1 xidx1 . . . dxn

=

∫ ∞

0

f1(x1)e
−(γ+t)x1dx1 . . .

∫ ∞

0

fn(xn)e
−(γ+t)xndxn.(4.2)

Let us now bound each of these simple integrals. Let p1,∗, . . . pn,∗ > 1 satisfy

1

p1
+

1

p1,∗
= 1, . . . ,

1

pn
+

1

pn,∗
= 1,
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so that
p1,∗ =

p1
p1 − 1

, . . . , pn,∗ =
pn

pn − 1
.

For any i = 1, . . . , n, applying the Hölder integral inequality with the parameters
pi and pi,∗, we get∫ ∞

0

fi(xi)e
−(γ+t)xidxi ≤ ∥fi∥pi

(∫ ∞

0

e−pi,∗(γ+t)xidxi

)1/pi,∗

= ∥fi∥pi [pi,∗(γ + t)]−1/pi,∗

= ∥fi∥pip
−1/pi,∗
i,∗ (γ + t)−1/pi,∗ .

Multiplying these bounds and using
n∑

i=1

1

pi,∗
=

n∑
i=1

(
1− 1

pi

)
= n−

n∑
i=1

1

pi
= n− 1,

we obtain ∫ ∞

0

f1(x1)e
−(γ+t)x1dx1 . . .

∫ ∞

0

fn(xn)e
−(γ+t)xndxn

≤ ∥f1∥p1 . . . ∥fn∥pnp
−1/p1,∗
1,∗ . . . p−1/pn,∗

n,∗ (γ + t)−
∑n

i=1 1/pi,∗

= ∥f1∥p1 . . . ∥fn∥pnp
−1/p1,∗
1,∗ . . . p−1/pn,∗

n,∗ (γ + t)−(n−1).(4.3)

Combining Equations (4.1), (4.2) and (4.3), we get∫ ∞

0

. . .

∫ ∞

0

e−γ
∑n

i=1 xi

(
∑n

i=1 xi)
λ
f1(x1) . . . fn(xn)dx1 . . . dxn

≤ 1

Γ(λ)

∫ ∞

0

tλ−1∥f1∥p1 . . . ∥fn∥pnp
−1/p1,∗
1,∗ . . . p−1/pn,∗

n,∗ (γ + t)−(n−1)dt

=

(
1

Γ(λ)
p
−1/p1,∗
1,∗ . . . p−1/pn,∗

n,∗

∫ ∞

0

tλ−1(γ + t)−(n−1)dt

)
∥f1∥p1 . . . ∥fn∥pn .(4.4)

Let us now focus on the simple integral with respect to t. Changing the variables
u = t/γ and using standard properties of the beta and gamma functions, we get∫ ∞

0

tλ−1(γ + t)−(n−1)dt = γλ−(n−1)

∫ ∞

0

uλ−1(1 + u)−(n−1)du

= γλ−(n−1)B(λ, n− 1− λ) = γλ−(n−1)Γ(λ)Γ(n− 1− λ)

Γ(n− 1)

= γλ−(n−1) 1

(n− 2)!
Γ(λ)Γ(n− 1− λ).(4.5)
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Combining Equations (4.4) and (4.5), simplifying Γ(λ) and using the expres-
sions of p1,∗, . . . , pn,∗, we obtain∫ ∞

0

. . .

∫ ∞

0

e−γ
∑n

i=1 xi

(
∑n

i=1 xi)
λ
f1(x1) . . . fn(xn)dx1 . . . dxn

≤
(

1

Γ(λ)
p
−1/p1,∗
1,∗ . . . p−1/pn,∗

n,∗ γλ−(n−1) 1

(n− 2)!
Γ(λ)Γ(n− 1− λ)

)
∥f1∥p1 . . . ∥fn∥pn

=

((
p1

p1 − 1

)1/p1−1

. . .

(
pn

pn − 1

)1/pn−1

γλ−(n−1) 1

(n− 2)!
Γ(n− 1− λ)

)
× ∥f1∥p1 . . . ∥fn∥pn
= Ω∥f1∥p1 . . . ∥fn∥pn ,

which completes the proof. □

As an example, in dimension n = 4, for λ ∈ (0, 3) and γ > 0, the following
inequality holds:∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

e−γ(x1+x2+x3+x4)

(x1 + x2 + x3 + x4)λ
f1(x1)f2(x2)f3(x3)f4(x4)dx1dx2dx3dx4

≤ Ω∥f1∥p1∥f2∥p2∥f3∥p3∥f4∥p4 ,

where

Ω =

(
p1

p1 − 1

)1/p1−1(
p2

p2 − 1

)1/p2−1(
p3

p3 − 1

)1/p3−1(
p4

p4 − 1

)1/p4−1

γλ−31

2
Γ(3− λ).

Therefore, Theorem 4.1 generalizes Theorem 3.1 to n dimensions, establishing
a Hardy-Hilbert-type integral inequality with an exponential-ratio kernel function.
The constant Ω depends explicitly on the gamma function, the decay parameters
λ and γ, and the exponents p1, . . . , pn, reflecting the interplay between the singu-
larity of the kernel function and its exponential decay.

As a particular case of interest, setting λ = 1 ∈ (0, n− 1), we get∫ ∞

0

. . .

∫ ∞

0

e−γ
∑n

i=1 xi∑n
i=1 xi

f1(x1) . . . fn(xn)dx1 . . . dxn ≤ Ω∥f1∥p1 . . . ∥fn∥pn ,

where

Ω =

(
p1

p1 − 1

)1/p1−1

. . .

(
pn

pn − 1

)1/pn−1

γ2−n 1

n− 2
.
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5. CONCLUSION

In this article, we presented a new three-dimensional Hardy-Hilbert-type inte-
gral inequality featuring an original exponential-ratio kernel function and a con-
stant factor expressed in terms of the gamma function. We extended this ap-
proach to the multi-dimensional case, thereby demonstrating the versatility and
applicability of the method. These results contribute to the ongoing development
of Hardy-Hilbert-type integral inequalities and provide a framework for studying
more general kernel functions in higher dimensions. Future research could inves-
tigate sharper bounds, alternative kernel functions and applications in functional
analysis, fractional calculus and related inequalities in applied mathematics.
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