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A NEW GENERALIZATION OF THE YOUNG INTEGRAL INEQUALITY
Christophe Chesneau

ABSTRACT. This article presents a new generalization of the classical Young inte-
gral inequality, which is obtained by introducing an auxiliary function. The key
innovation lies in the combination of the Chebyshev and Young integral inequal-
ities. This creates a unified analytical framework that can be used to derive new
bounds and relationships between monotonic functions and their inverses. This is
demonstrated through several examples and related results.

1. INTRODUCTION

Inequalities play a fundamental role in mathematical analysis and its numerous
applications. They provide powerful tools for estimating quantities and establish-
ing relationships between functions. Comprehensive discussions and applications
of various inequalities can be found in [2,3,/14,16,29]. One of the most celebrated
classical results in this field is the Young integral inequality, which was first intro-
duced in [32]. This inequality elegantly characterizes the relationship between a
function and its inverse through their integral representations. A formal statement
is provided below.

Theorem 1.1 (Young integral inequality). Let ¢ > 0 and f : [0,¢] — [0,4+00) be a
continuous strictly increasing function satisfying f(0) = 0. Then, for any a € [0, ]
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and b € [0, f(c)], we have

/f d:c+/f x)dz > ab,

where f~1 denotes the inverse function of f.

In recent years, there has been a growing interest in extending, refining and
applying the Young integral inequality in various ways. Comprehensive surveys
and related developments can be found in [1,4-13,/15,/17-28,30,31,[33].

In this article, we address the topic of the Young integral inequality by present-
ing a new generalization involving an auxiliary function, g. This approach yields a
broader class of inequalities that reduce to the classical Young integral inequality
when g(x) = 1. The generalized form can be stated as follows:

([ sto) " [ storie o [sorae) [ oorie >

where the precise assumptions on the functions involved will be presented later.
The key to this result lies in combining the Chebyshev and Young integral inequal-
ities. This synthesis provides a flexible analytical framework that can be used
to derive new bounds and relationships between monotonic functions and their
inverses. Furthermore, it paves the way for further extensions and applications
within the theory of integral inequalities and functional analysis. Several exam-
ples are discussed that illustrate specific choices of the function g, along with
additional related results.

The remainder of this article is organized as follows: Section [2| presents the
main result together with its proof and some examples. In Section |3 we discuss
several additional results. Finally, Section 4| concludes the article with a summary
of the main contributions and suggestions for future research.

2. MAIN RESULT

2.1. Statement and proof. The theorem below presents our generalization of the
Young integral inequality. We emphasize the monotonic assumption on g, which
is crucial to the proof.

Theorem 2.1. Let ¢ > 0, f : [0,¢] — [0,4+00) be a continuous strictly increasing
function satisfying f(0) = 0, and g : [0, max(c, f(c))] — [0,+00) be an increasing
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function. Then, for any a € [0,c] and b € [0, f(c)], we have
(/ dx) /f dx+b</ dx) /f Vdz > ab.

Proof. A key to the proof is the Chebyshev integral inequality, as recalled in the
appendix of this article. Since both f and g are increasing functions, this inequality
applied to f and g over the interval [0, a] yields

70 /f d:l:>—/f dx O/GQ(x)dx,

which is equivalent to

@2.1) /Oaf(a:)g(x)dx > é/oaf(x)dx /Oag(x)dx

Moreover, since f is increasing, its inverse function f~! is also increasing. Hence,
by applying the Chebyshev integral inequality to f~' and g on the interval [0, b],

we obtain
/ fH@)g(x)de > bT/ ! /Obg(x)dx,

which is equ1va1ent to

2.2) /f 1)z > /f / o(z)dz.

Using Equations (2.1]) and (2:2)), the fact that g is non-negative implies that [* g(x)dx
and fo x)dx are non-negative, and applying the classical Young integral inequal-
ity to f recalled in Theorem|1.1], we have

o [ o) / sepes v ( [owar) [ 1
2a</0 g(a:)dx) 5/0 f(x)dx/oag(x)dx
+b (/Obg(x)da:)_l % /Ob £ (2)dx /Obg(x)dx
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This completes the proof. O

Clearly, if we set g(x) = 1, Theorem reduces to the classical Young integral
inequality for f, as stated in Theorem The presence of g introduces a weight-
ing mechanism that enables a more flexible and refined comparison between a
function and its inverse. This enables a broader class of integral inequalities to be
derived.

2.2. Examples. Some examples of Theorem are now presented. The setting
of this theorem is implicitly considered.

- If we take g(z) = 2*, with o > 0, Theorem [2.1] yields

oc+1 a ba+1 a
<a+1) /f d$+b( ) /f dx > ab,

so that
a /‘l fx)z*de + b7 /b fH(z)xdw > ab
0 0 Ta+1

If we set & = 0, then the classical Young integral inequality is obtained.

The other cases are new to the literature, as far as the author knows.
- If we take g(x) = €*, with 8 > 0, Theorem [2.1] yields

u 1 g -1
a (65 5_ 1) / f(z)ePdx + b (6&5— 1> /b f Y z)e’ dx > ab,
0 0

so that

b
a (e /f )ePmda + b (e /f ﬁxdxz%.
If we set S = 0, then the classical Young integral inequality is obtained.
The other cases are new to the literature, as far as the author knows.
- If we take g(z) = log(1 + vz), with v > 0, Theorem [2.1]yields
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a (%(1 +va)log(1 + va) — a) B /a f(x)log(1 + yx)dx

+b <i(1 + 7b) log(1 + ~b) — b) / () log(1 + yx)dz > ab.

Other examples can be found by using trigonometric or special functions for g.

3. ADDITIONAL RESULTS

This section is devoted to additional results that, in one way or another, follow
the spirit of Theorem

3.1. Consequences of Theorem The proposition below presents a new one-
function version of the Young integral inequality.

Proposition 3.1. Let ¢ > 0 and f : [0, ] — [0, +00) be a continuous strictly increas-
ing function satisfying f(0) = 0. Then, for any a € [0, | and b € [0, max(c, f(c))], we
have

a(/oaf(x)dx)_l/o( dx+b</f da:> /f 2)dz > ab.

Proof. Since the function f is increasing, the result follows directly from Theorem
by taking g = f. This completes the proof. O

The proposition below presents another new one-function version of the Young
integral inequality.

Proposition 3.2. Let ¢ > 0 and f : [0, c] — [0, +00) be a continuous strictly increas-
ing function satisfying f(0) = 0. Then, for any a € [0, max(c, f(c))] and b € [0, f(c)],
we have

(/ = dx)_l/ It dfrf+b</f ) /Ob(f_l(x))deZab.

Proof. Since f is increasing, its inverse function f~! is also increasing. The result
follows directly from Theorem by taking ¢ = f~!. This completes the proof.
O
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3.2. Other general results. Under the monotonic assumption on g, one can de-
rive generalizations of the Young integral inequalities that are more direct than
the one stated in Theorem but with some limitations. Two such inequalities
are presented below.

Theorem 3.1. Let ¢ > 0, f : [0,¢] — [0,+00) be a continuous strictly increasing
function satisfying f(0) = 0, and ¢ : [0, max(c, f(c))] — [0, +00) be a decreasing
function. Then, for any a € [0,c] and b € [0, f(c)] such that g(a) # 0 and g(b) # 0,

we have
/ f(x)g(x)dx + ( / ! x)dx > ab.

Proof. Since f, f~! and ¢ are non-negative, and g is decreasing, we have

(3.1) /f z)dr > g(a /f

and

(3.2) /f z)dx > g(b /f

Combining Equations (3.1) and (3.2), and applying the classical Young integral
inequality to f recalled in Theorem (1.1, we have

/f z)dzr + (g /f
) / F@)dz + (9(6) ™ g(b) / &
/f da;+/f 2)dz > ab.

This completes the proof. O

The assumption that g(a) # 0 and g(b) # 0 limits the scope of this result. How-
ever, it has the advantage of being true for a decreasing function g, unlike Theorem
2.1l

The analogue of Theorem is presented below, under the assumption that g
is an increasing function.

Theorem 3.2. Let ¢ > 0, f : [0,¢] — [0,4+00) be a continuous strictly increasing
function satisfying f(0) = 0, and g : [0,max(c, f(c))] — [0,+00) be an increasing
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function. Then, for any a € [0,c] and b € [0, f(c)], we have

/Oa f(x)g(x)dx +/ f x)dx > abg(0).

Proof. Since f, f~! and ¢ are non-negative, and g is increasing, we have

(3.3) /f z)dz > g(0 /f

and

3.4) [ ez g0 [ 1

Combining Equations (3.3) and (3.4), and applying the classical Young integral
inequality to f recalled in Theorem (1.1, we have

/Oaf(x) d:z:+/f 2)dz > g(0 /f )z + g(0 /f
0) (/0 f(x)d:c—l—/ofl(m)dx)zabg(()).

This completes the proof. O

A notable limitation of this result occurs when ¢(0) = 0, which yields the trivial

/Oaf(x) dx+/f x)dr > 0,

since it is merely the sum of two non-negative integrals. This situation arises,
for instance, in the key case g(z) = x* with @ > 0. In such cases, Theorem
provides a more suitable formulation.

inequality

4. CONCLUSION

In conclusion, this study presents a new generalization of the classical Young in-
tegral inequality, incorporating an auxiliary function g. This methodology, which
combines the Chebyshev and Young integral inequalities, provides a consistent
analytical framework for deriving new bounds and relationships between mono-
tonic functions and their inverses. Several illustrative examples and additional
integral inequalities are presented. Promising avenues for future research include
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studying multidimensional extensions and operator formulations, and applying
the methodology to problems in convex analysis and information theory.

APPENDIX

Due to its significance in the main proof, the theorem below provides a formal
statement of the Chebyshev integral inequality.

Theorem 4.1 (Chebyshev integral inequality). Let a,b € R with b > a and f,g :
[a,b] — R be integrable functions that are both increasing or both decreasing. Then
we have
I I I
> .
= | 1@ = = [ e [ gty

The inequality is reversed if one of the functions f or g is increasing and the other is

decreasing.
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