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SOME PROPERTIES OF COMBINATION OF SOLUTIONS TO SECOND-ORDER

LINEAR DIFFERENTIAL EQUATIONS WITH ANALYTIC COEFFICIENTS OF

[P;Q]-ORDER IN THE UNIT DISC

BENHARRAT BELAÏDI1 AND ZINELÂABIDINE LATREUCH

Abstract. In this paper, we consider some properties on the growth and oscillation of combination of
solutions of the linear di�erential equation

f 00 + A (z) f 0 +B (z) f = 0;

with analytic coe�cients A (z) and B (z) with [p; q]�order in the unit disc � = fz 2 C : jzj < 1g.

1. Introduction and preliminaries

In the year 2000, Heittokangas �rstly investigated the

growth and oscillation theory of complex di�erential

equation

(1.1) f (k) + Ak�1 (z) f
(k�1) + � � �+ A0 (z) f = 0;

where A0 (z) ; � � � ; Ak�1 (z) are analytic functions in

the unit disc (see, [15]). It is well-known that all solu-

tions of (1.1) are analytic functions (see, [15]). After

him many authors (see, [4], [5], [8], [9], [10], [11], [12],

[13], [16], [22]) have investigated the complex di�er-

ential equation (1.1) and the second-order di�erential

equations

(1.2) f 00 + A (z) f 0 +B(z)f = 0;

(1.3) f 00 + A (z) f = 0

with analytic and meromorphic coe�cients in the

unit disc �: In ([17], [18]), Juneja and his co-authors

investigated some properties of entire functions of

[p; q]�order, and obtained some results concerning

their growth. Later, Liu, Tu and Shi; Xu, Tu and

Xuan; Li and Cao; Belaïdi; Latreuch and Belaïdi

applied the concepts of entire (meromorphic) func-

tions in the complex plane and analytic functions in

the unit disc � = fz 2 C : jzj < 1g of [p; q]�order

to investigate the complex di�erential equation (1.1)

(see [6], [7], [22], [23], [24], [26]). In this paper, we will

use this concept to study the growth and the oscilla-

tion of the combination of two linearly independent

solutions f1 and f2 of equation (1.2) in the unit disc.

In this paper, we assume that the reader is famil-

iar with the fundamental results and the standard

notations of the Nevanlinna's theory on the complex

plane and in the unit disc � = fz 2 C : jzj < 1g ; see

([14], [15], [19], [20], [25]).

In the following, we will give similar de�nitions

as in ([17], [18]) for analytic and meromorphic func-

tions of [p; q]-order, [p; q]-type and [p; q]-exponent of

convergence of the zero-sequence in the unit disc.

De�nition 1.1. ([6],[22] ) Let p � q � 1 be inte-

gers, and let f be a meromorphic function in �;

the [p; q]-order of f (z) is de�ned by

�[p;q] (f) = lim sup
r!1�

log+p T (r; f)

logq
1

1�r

;

where T (r; f) is the Nevanlinna characteristic

function of f: For an analytic function f in �,

we also de�ne

�M;[p;q] (f) = lim sup
r!1�

log+p+1M (r; f)

logq
1

1�r

;

where M (r; f) = max
jzj=r

jf (z)j :

Remark 1.1. It is easy to see that 0 � �[p;q] (f) �

+1 (0 � �M;[p;q] (f) � +1 ); for any p �

q � 1: By De�nition 1.1, we have that �[1;1] =
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� (f) (�M;[1;1] = �M (f)) and �[2;1] = �2 (f)�
�M;[2;1] = �M;2 (f)

�
.

For the relationship between �[p;q] (f) and

�M;[p;q] (f) we have the following double inequality.

Proposition 1.1. ([6]) Let p � q � 1 be integers,

and let f be an analytic function in � of [p; q]-

order.

(i) If p = q � 1; then

�[p;q] (f) � �M;[p;q] (f) � �[p;q] (f) + 1:

(ii) If p > q � 1, then

�[p;q] (f) = �M;[p;q] (f) :

De�nition 1.2. ([22] ) Let p � q � 1 be integers.

The [p; q]-type of a meromorphic function f (z) in

� of [p; q]-order � (0 < � < +1 ) is de�ned by

�[p;q] (f) = lim sup
r!1�

log+p�1 T (r; f)�
logq�1

1
1�r

�� :

De�nition 1.3. ([22]) Let p � q � 1 be inte-

gers. The [p; q]-exponent of convergence of the

zero-sequence of f (z) in � is de�ned by

�[p;q] (f) = lim sup
r!1�

log+p N
�
r; 1

f

�
logq

1
1�r

;

where N
�
r; 1

f

�
is the integrated counting function

of zeros of f (z) in fz : jzj � rg. Similarly, the

[p; q]-exponent of convergence of the sequence of

distinct zeros of f (z) in � is de�ned by

�[p;q] (f) = lim sup
r!1�

log+p N
�
r; 1

f

�
logq

1
1�r

;

where N
�
r; 1

f

�
is the integrated counting function

of distinct zeros of f (z) in fz : jzj � rg.

The study of the properties of linearly indepen-

dent solutions of complex di�erential equations is an

old problem. In ([2], [3]), Bank and Laine obtained

some results about the product E = f1f2 of two lin-

early independent solutions f1 and f2 of (1.3) in the

complex plane. In [21], the authors have investigated

the relations between the polynomial of solutions of

(1.2) and small functions in the complex plane. They

showed that w = d1f1 + d2f2 keeps the same proper-

ties of growth and oscillation of fj (j = 1; 2) ; where

f1 and f2 are two linearly independent solutions of

(1.2) and obtained the following results.

Theorem 1.1. ([21]) Let A (z) and B (z) be entire

functions of �nite order such that � (A) < � (B)

and � (A) < � (B) < +1 if � (B) = � (A) >

0. Let dj (z) (j = 1; 2) be entire functions

that are not all vanishing identically such that

maxf� (d1) ; � (d2)g < � (B). If f1 and f2 are two

nontrivial linearly independent solutions of (1.2),

then the polynomial of solutions w = d1f1 + d2f2

satis�es

� (w) = � (f1) = � (f2) = +1

and

�2 (w) = � (B) :

In the same paper, the authors studied also the

zeros of the di�erence between the polynomial of so-

lutions w = d1f1+ d2f2 and entire functions of �nite

order.

The remainder of the paper is organized as fol-

lows. In Section 2, we shall show our main results

which improve and extend many results in the above-

mentioned papers. Section 3 is for some lemmas and

basic theorems. The other sections are for the proofs

of our main results.

2. Main results

A natural question arises: What can be said about

similar situations in the unit disc� for equation (1.2)

in the terms of [p; q]�order? Before we state our re-

sults, we de�ne h and  (z) by

h =

��������

H1 H2 H3 H4

H5 H6 H7 H8

H9 H10 H11 H12

H13 H14 H15 H16

��������
;

where

H1 = d1; H2 = 0; H3 = d2; H4 = 0; H5 = d01; H6 = d1;

H7 = d02; H8 = d2; H9 = d001 � d1B;

H10 = 2d01 � d1A; H11 = d002 � d2B;

H12 = 2d02�d2A; H13 = d
(3)
1 �3d01B+d1AB�d1B

0;

H14 = 3d001 � 2d01A� d1B + d1A
2 � d1A

0;

H15 = d
(3)
2 � 3d02B + d2AB � d2B

0;

H16 = 3d002 � 2d02A� d2B + d2A
2 � d2A

0

and

 (z) = 2

�
d1d2d

0
2 � d

2
2d
0
1

�
h

'(3) + �2'
00 + �1'

0 + �0';

where ' 6� 0, dj (j = 1; 2) are analytic functions of

�nite [p; q]-order in � and

(2.1) �2 =
2
�
d1d2d

0
2 � d

2
2d
0
1

�
A� 3d1d2d

00
2 + 3d22d

00
1

h
;

�1 =
6d2 (d

0
1d
00
2 � d

0
2d
00
1) + 2d2 (d1d

0
2 � d2d

0
1)B

h

(2.2) +
2d2 (d1d

0
2 � d2d

0
1)A

0 + 3d2 (d2d
00
1 � d1d

00
2)A

h
;
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�0 =
1

h
[(d1d

0
2d
00
2 � 3d2d

0
2d
00
1 + 2d2d

0
1d
00
2)A

+
�
4d1(d

0
2)

2 + 3d22d
00
1 � 3d1d2d

00
2 � 4d2d

0
1d
0
2

�
B

+2
�
d2d

0
1d
0
2 � d1(d

0
2)

2
�
A0

+2
�
d1d2d

0
2 � d

2
2d
0
1

�
B0 + 6(d02)

2d001

�2d1d
0
2d
000
2 + 2d2d

0
1d
000
2

(2.3) �3d2d
00
1d
00
2 � 6d01d

0
2d
00
2 + 3d1(d

00
2)

2]:

Theorem 2.1. Let p � q � 1 be integers, and

let A (z) and B (z) be analytic functions in � of

�nite [p; q]-order such that �[p;q] (A) < �[p;q] (B)

and 0 < �[p;q] (A) < �[p;q] (B) < +1 if �[p;q] (B) =

�[p;q] (A) > 0. Let dj (z) (j = 1; 2) be analytic func-

tions that are not all vanishing identically such

that maxf�[p;q] (d1) ; �[p;q] (d2)g < �[p;q] (B). If f1
and f2 are two nontrivial linearly independent so-

lutions of (1.2), then the polynomial of solutions

(2.4) w = d1f1 + d2f2

satis�es

�[p;q] (w) = �[p;q] (f1) = �[p;q] (f2) = +1

and

�[p;q] (B) � �[p+1;q] (w) � �M ;

where and in the following �M =

max
�
�M;[p;q] (A) ; �M;[p;q] (B)

	
: Furthermore, if

p > q � 1; then

�[p+1;q] (w) = �[p;q] (B) :

Example 2.1. ([16]) For � > 0; the func-

tions f1 (z) = exp(exp
�
(1� z)��

�
) and f2 (z) =

exp
�
(1� z)��

�
exp(exp

�
(1� z)��

�
) are linearly

independent solutions of (1.2) satisfying

�[1;1] (f1) = �[1;1] (f2) = +1

and

�[2;1] (f1) = �[2;1] (f2) = �;

where

A (z) = �
2� exp

�
(1� z)��

�
(1� z)�+1

�
�

(1� z)�+1
�

1 + �

1� z

and

B (z) =
�2 exp

�
2(1� z)��

�
(1� z)2�+2

:

It is clear that �[1;1] (A) = �[1;1] (B) and �[1;1] (A) <

�[1;1] (B) : Then, by Theorem 2.1 for any two

analytic functions di (z) (i = 1; 2) of �nite order

�[1;1] (di) < +1 (i = 1; 2) that are not all vanishing

identically such that max
�
�[1;1] (d1) ; �[1;1] (d2)

	
<

�[1;1] (B), the combination w = d1f1 + d2f2 is of

in�nite order �[1;1] (w) = +1 and �[2;1] (w) = �.

From Theorem 2.1, we can obtain the following

result.

Corollary 2.1. Let p � q � 1 be integers, and let

fi (z) (i = 1; 2) be two nontrivial linearly indepen-

dent solutions of (1.2), where A (z) and B (z) 6� 0

are analytic functions of �nite [p; q]�order in

� such that �[p;q] (A) < �[p;q] (B) or �[p;q] (A) =

�[p;q] (B) > 0 and 0 < �[p;q] (A) < �[p;q] (B) < +1;

and let dj (z) (j = 1; 2; 3) be analytic functions in

� satisfying

max
�
�[p;q] (dj) : j = 1; 2; 3

	
< �[p;q] (B)

and

d2 (z) f2 + d1 (z) f1 = d3 (z) :

Then dj (z) � 0 (j = 1; 2; 3) :

Theorem 2.2. Under the hypotheses of Theorem

2.1, let ' (z) 6� 0 be an analytic function in �

with �nite [p; q]�order such that  (z) 6� 0: If f1
and f2 are two nontrivial linearly independent so-

lutions of (1.2), then the polynomial of solutions

w = d1f1 + d2f2 satis�es

(2.5)

�[p;q] (w � ') = �[p;q] (w � ') = �[p;q] (w) = +1

and

�[p;q] (B) � �[p+1;q] (w � ') =

(2.6) �[p+1;q] (w � ') = �[p+1;q] (w) � �M :

Furthermore, if p > q � 1; then

�[p+1;q] (w � ') = �[p+1;q] (w � ')

(2.7) = �[p+1;q] (w) = �[p;q] (B) :

Theorem 2.3. Let p � q � 1 be integers, and

let A (z) and B (z) be analytic functions in � of

�nite [p; q]�order such that �[p;q] (A) < �[p;q] (B).

Let dj (z) ; bj(z) (j = 1; 2) be �nite [p; q]�order

analytic functions in � such that d1 (z) b2 (z) �

d2 (z) b1 (z) 6� 0. If f1 and f2 are two nontrivial

linearly independent solutions of (1.2), then

�[p;q]

�
d1f1 + d2f2

b1f1 + b2f2

�
= +1

and

�[p;q] (B) � �[p+1;q]

�
d1f1 + d2f2

b1f1 + b2f2

�
� �M :

Furthermore, if p > q � 1; then

�[p+1;q]

�
d1f1 + d2f2

b1f1 + b2f2

�
= �[p;q] (B) :
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3. Auxiliary lemmas

Lemma 3.1. ([14], [15], [25]) Let f be a meromor-

phic function in the unit disc and let k 2 N: Then

m

�
r;
f (k)

f

�
= S (r; f) ;

where S (r; f) = O
�
log+ T (r; f) + log

�
1

1�r

��
; pos-

sibly outside a set E1 � [0; 1) with
R
E1

dr
1�r < +1 :

Lemma 3.2. ([1], [15]) Let g : (0; 1) ! R and

h : (0; 1) ! R be monotone increasing functions

such that g (r) � h (r) holds outside of an excep-

tional set E2 � [0; 1) for which
R
E2

dr
1�r < +1 .

Then there exists a constant d 2 (0; 1) such that

if s (r) = 1� d (1� r) ; then g (r) � h (s (r)) for all

r 2 [0; 1):

Lemma 3.3. ([6]) Let p � q � 1 be integers.

If A0 (z) ; � � � ; Ak�1 (z) are analytic functions of

[p; q]�order in the unit disc �; then every solu-

tion f 6� 0 of (1.1) satis�es

�[p+1;q] (f) = �M;[p+1;q] (f)

� max
�
�M;[p;q] (Aj) : j = 0; 1; � � � ; k � 1

	
:

Lemma 3.4. ([22]) Let p � q � 1 be integers. Let

Aj (j = 0; � � � ; k � 1) ; F 6� 0 be analytic functions

in �; and let f (z) be a solution of the di�erential

equation

f (k)+Ak�1 (z) f
(k�1)+ � � �+A1 (z) f

0+A0 (z) f = F

satisfying

max
�
�[p;q] (Aj) (j = 0; � � � ; k � 1) ; �[p;q] (F )

	

< �[p;q] (f) = � � +1:

Then we have

�[p;q] (f) = �[p;q] (f) = �[p;q] (f)

and

�[p+1;q] (f) = �[p+1;q] (f) = �[p+1;q] (f) :

Lemma 3.5. ([22]) Let p � q � 1 be integers, and

let f and g be non-constant meromorphic func-

tions of [p; q]-order in �: Then we have

�[p;q] (f + g) � max
�
�[p;q] (f) ; �[p;q] (g)

	
and

�[p;q] (fg) � max
�
�[p;q] (f) ; �[p;q] (g)

	
:

Furthermore, if �[p;q] (f) > �[p;q] (g) ; then we ob-

tain

�[p;q] (f + g) = �[p;q] (fg) = �[p;q] (f) :

Lemma 3.6. ([22]) Let p � q � 1 be integers, and

let f and g be meromorphic functions of [p; q]-

order in � such that 0 < �[p;q] (f) ; �[p;q] (g) <

+1 and 0 < �[p;q] (f) ; �[p;q] (g) < +1: Then, we

have

(i) If �[p;q] (f) > �[p;q] (g) ; then

�[p;q] (f + g) = �[p;q] (fg) = �[p;q] (f) :

(ii) If �[p;q] (f) = �[p;q] (g) and �[p;q] (f) 6= �[p;q] (g) ;

then

�[p;q] (f + g) = �[p;q] (fg) = �[p;q] (f) = �[p;q] (g) :

Lemma 3.7. ([22]) Let p � q � 1 be integers, and

let Aj (z) (j = 0; � � � ; k � 1) be analytic functions

in � satisfying

max
�
�[p;q] (Aj) : j = 1; � � � ; k � 1

	
< �[p;q] (A0) :

If f 6� 0 is a solution of (1.1), then �[p;q] (f) =

+1 and

�[p;q] (A0) � �[p+1;q] (f)

� max
�
�M;[p;q] (Aj) : j = 0; � � � ; k � 1

	
:

Furthermore, if p > q � 1; then

�[p+1;q] (f) = �[p;q] (A0) :

Lemma 3.8. Let p � q � 1 be integers, and let

A (z) and B (z) be analytic functions in � of �-

nite [p; q]�order such �[p;q] (A) < �[p;q] (B). If f1
and f2 are two nontrivial linearly independent so-

lutions of (1.2), then f1
f2

is of in�nite [p; q]-order

and

�[p;q] (B) � �[p+1;q]

�
f1

f2

�
� �M :

Furthermore, if p > q � 1; then

�[p+1;q]

�
f1

f2

�
= �[p;q] (B) :

Proof. Suppose that f1 and f2 are two nontriv-

ial linearly independent solutions of (1.2). Since

�[p;q] (B) > �[p;q] (A), then by Lemma 3.7

�[p;q] (f1) = �[p;q] (f2) = +1; �[p;q] (B) �

(3.1) �[p+1;q] (f1) = �[p+1;q] (f2) � �M :

Furthermore, if p > q � 1; then

�[p+1;q] (f1) = �[p+1;q] (f2) = �[p;q] (B) :

On the other hand

(3.2)

�
f1

f2

�0
= �

W (f1; f2)

f22
;

where W (f1; f2) = f1f
0
2 � f2f

0
1 is the Wronskian of

f1 and f2: By using (1.2) we obtain that

W 0(f1; f2) = �A (z)W (f1; f2);

which implies that

(3.3) W (f1; f2) = K exp(�

Z
A(z)dz);
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where
R
A(z)dz is the primitive of A (z) and K 2

Cn f0g : By (3.2) and (3.3) we have

(3.4)

�
f1

f2

�0
= �K

exp(�
R
A(z)dz)

f22
:

Since �[p;q](f2) = +1; �[p+1;q](f2) � �[p;q] (B) >

�[p;q] (A) if p � q � 1 and �[p+1;q](f2) = �[p;q] (B) >

�[p;q] (A) if p > q � 1; then by using (3.1) and Lemma

3.5 we obtain from (3.4)

�[p;q]

�
f1

f2

�
= �[p;q] (f2) = +1;

�[p;q] (B) � �[p+1;q]

�
f1

f2

�
= �[p+1;q](f2) � �M

if p � q � 1 and

�[p+1;q]

�
f1

f2

�
= �[p+1;q](f2) = �[p;q] (B)

if p > q � 1: �

Lemma 3.9. ([6]) Let p � q � 1 be integers. Let

f be a meromorphic function in the unit disc �

such that �[p;q] (f) = � < +1, and let k � 1 be an

integer. Then for any " > 0;

m

�
r;
f (k)

f

�
= O

�
expp�1

�
(�+ ") logq

�
1

1� r

���

holds for all r outside a set E3 � [0; 1) withR
E3

dr
1�r < +1 :

Lemma 3.10. Let p � q � 1 be integers, and let

f be a meromorphic function in � with [p; q] -

order 0 < �[p;q] (f) = � < +1 and [p; q] - type

0 < �[p;q] (f) = � < +1: Then for any given � < �;

there exists a subset E4 of [0; 1) that has an in-

�nite logarithmic measure
R
E4

dr
1�r = +1 such

that logp�1 T (r; f) > �
h
logq�1

�
1

1�r

�i�
holds for

all r 2 E4:

Proof. By the de�nitions of [p; q] - order and [p; q] -

type, there exists an increasing sequence frmg
+1
m=1 �

[0; 1) (rm ! 1�) satisfying 1
m

+
�
1� 1

m

�
rm < rm+1

and

lim
m!+1

logp�1 T (rm; f)�
logq�1

�
1

1�rm

��� = �:

Then there exists a positive integer m0 such that for

all m � m0 and for any given 0 < " < � ��; we have

(3.5)

logp�1 T (rm; f) > (� � ")

�
logq�1

�
1

1� rm

���

:

For any given � < ��"; there exists a positive integer

m1 such that for all m � m1 we have

(3.6)

2
4 logq�1

�
1� 1

m

� �
1

1�r

�

logq�1

�
1

1�r

�
3
5
�

>
�

� � "
:

Take m � m2 = max fm0;m1g : By (3.5) and (3.6),

for any r 2 [rm;
1
m

+
�
1� 1

m

�
rm]; we have

logp�1 T (r; f) � logp�1 T (rm; f)

> (� � ")

�
logq�1

�
1

1� rm

���

� (� � ")

�
logq�1

�
1�

1

m

��
1

1� r

���

> �

�
logq�1

�
1

1� r

���

:

Set E4 =
+1
[

m=m2

�
rm;

1
m

+
�
1� 1

m

�
rm
�
; then there

holds

mlE4 =

+1X
m=m2

1

m
+(1� 1

m
)rmZ

rm

dt

1� t

=

+1X
m=m2

log
m

m� 1
= +1:

�

Lemma 3.11. Let p � q � 1 be integers, and

let A (z) and B (z) be analytic functions in � of

�nite [p; q]�order such �[p;q] (A) < �[p;q] (B) and

0 < �[p;q] (A) < �[p;q] (B) < +1 if �[p;q] (B) =

�[p;q] (A) > 0. If f 6� 0 is a solution of (1.2), then

�[p;q] (f) = +1 ; �[p;q] (B) � �[p+1;q](f) � �M

and

�[p+1;q](f) = �[p;q] (B)

if p > q � 1.

Proof. If �[p;q] (B) > �[p;q] (A), then the result can be

deduced by Lemma 3.7. We prove only the case when

�[p;q] (B) = �[p;q] (A) = � and �[p;q] (B) > �[p;q] (A) >

0: Since f 6� 0; then by (1.2)

B = �

�
f 00

f
+ A

f 0

f

�
:

Suppose that f is of �nite [p; q]�order �[p;q](f) =

� < +1: Then by Lemma 3.9

T (r;B) � T (r;A)+O

�
expp�1

�
(�+ ") logq

�
1

1� r

���

holds for all r outside a set E3 � [0; 1) with
R
E3

dr
1�r <

+1; which implies by using Lemma 3.2 the contra-

diction

�[p;q] (B) � �[p;q] (A) :

Hence �[p;q] (f) = +1: By Lemma 3.3, we have

�[p+1;q] (f) = �M;[p+1;q] (f)

� max
�
�M;[p;q] (A) ; �M;[p;q] (B)

	
:

On the other hand, since �[p;q] (f) = +1; then by

Lemma 3.1

(3.7)

T (r;B) � T (r;A)+O

�
log+ T (r; f) + log

�
1

1� r

��
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holds for all r outside a set E1 � [0; 1) withR
E1

dr
1�r < +1. By �[p;q] (B) > �[p;q] (A) > 0, we

choose �0; �1 satisfying �[p;q] (B) > �0 > �1 >

�[p;q] (A) such that for r ! 1�; we have

(3.8) T (r;A) � expp�1

�
�1

�
logq�1

�
1

1� r

����
:

By Lemma 3.10, there exists a subset E4 � [0; 1) of

in�nite logarithmic measure such that

(3.9) T (r;B) > expp�1

�
�0

�
logq�1

�
1

1� r

����
:

By (3.7)-(3.9) we obtain for all r 2 E4nE1

expp�1

�
�0

�
logq�1

�
1

1� r

����

� expp�1

�
�1

�
logq�1

�
1

1� r

����

(3.10) +O

�
log+ T (r; f) + log

�
1

1� r

��
:

By using (3.10) and Lemma 3.2, we obtain

�[p;q] (B) � �[p+1;q] (f) :

Hence

�[p;q] (B) � �[p+1;q] (f) � max
�
�M;[p;q] (A) ; �M;[p;q] (B)

	
if p � q � 1 and �[p+1;q] (f) = �[p;q] (B) if p > q �

1: �

4. Proof of Theorem 2.1

Proof. In the case when d1 (z) � 0 or d2 (z) � 0; then

the conclusions of Theorem 2.1 are trivial. Suppose

that f1 and f2 are two nontrivial linearly independent

solutions of (1.2) and dj (z) 6� 0 (j = 1; 2) : Then by

Lemma 3.11, we have

�[p;q] (f) = +1; �[p;q] (B) � �[p+1;q](f) � �M

if p � q � 1 and

�[p+1;q](f) = �[p;q] (B)

if p > q � 1. Suppose that d1 = cd2; where c is a

complex number: Then, we obtain

w = d1f1 + d2f2 = cd2f1 + d2f2 = (cf1 + f2) d2:

Since f = cf1 + f2 is a solution of (1.2) and

�[p;q] (d2) < �[p;q] (B) ; then we have

�[p;q] (w) = �[p;q] (cf1 + f2) = +1;

�[p;q] (B) � �[p+1;q] (w) = �[p+1;q] (cf1 + f2) � �M

if p � q � 1 and

�[p+1;q] (w) = �[p+1;q] (cf1 + f2) = �[p;q] (B)

if p > q � 1. Suppose now that d1 6� cd2 where c is a

complex number. Di�erentiating both sides of (2.4),

we obtain

(4.1) w0 = d01f1 + d1f
0
1 + d02f2 + d2f

0
2:

Di�erentiating both sides of (4.1), we obtain

(4.2) w00 = d001f1+2d01f
0
1+d1f

00
1+d

00
2f2+2d02f

0
2+d2f

00
2 :

Substituting f 00j = �A (z) f 0j �B (z) fj (j = 1; 2) into

equation (4.2), we have

w00 = (d001 � d1B) f1 + (2d01 � d1A) f
0
1

(4.3) +(d002 � d2B) f2 + (2d02 � d2A) f
0
2:

Di�erentiating both sides of (4.3) and by substituting

f 00j = �A (z) f 0j �B (z) fj (j = 1; 2) ; we obtain

w000 =
�
d
(3)
1 � 3d01B + d1 (AB �B0)

�
f1

+
�
3d001 � 2d01A+ d1

�
A2 � A0 �B

��
f 01

+
�
d
(3)
2 � 3d02B + d2 (AB �B0)

�
f2

(4.4) +
�
3d002 � 2d02A+ d2

�
A2 � A0 �B

��
f 02:

By (2.4) and (4.1)-(4.4) we have8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

w = d1f1 + d2f2;

w0 = d01f1 + d1f
0
1 + d02f2 + d2f

0
2;

w00 = (d001 � d1B) f1 + (2d01 � d1A) f
0
1

+(d002 � d2B) f2 + (2d02 � d2A) f
0
2;

w000 =
�
d
(3)
1 � 3d01B + d1 (AB �B0)

�
f1

+
�
3d001 � 2d01A+ d1

�
A2 � A0 �B

��
f 01

+
�
d
(3)
2 � 3d02B + d2 (AB �B0)

�
f2

+
�
3d002 � 2d02A+ d2

�
A2 � A0 �B

��
f 02:

To solve this system of equations, we need �rst to

prove that h 6� 0: By simple calculations we obtain

h =

��������

H1 H2 H3 H4

H5 H6 H7 H8

H9 H10 H11 H12

H13 H14 H15 H16

��������
= 2 (d1d

0
2 � d2d

0
1)

2
B

+
�
d22d

0
1d
00
1 + d21d

0
2d
00
2 � d1d2d

0
1d
00
2 � d1d2d

0
2d
00
1

�
A

�2 (d1d
0
2 � d2d

0
1)

2
A0 + 2d1d2d

0
1d
000
2 + 2d1d2d

0
2d
000
1

�6d1d2d
00
1d
00
2 � 6d1d

0
1d
0
2d
00
2 � 6d2d

0
1d
0
2d
00
1

+6d1(d
0
2)

2d001 + 6d2(d
0
1)

2d002 � 2d22d
0
1d
000
1

�2d21d
0
2d
000
2 + 3d21(d

00
2)

2 + 3d22(d
00
1)

2:

It is clear that (d1d
0
2 � d2d

0
1)

2
6� 0 because d1 6= cd2.

Since

maxf�[p;q] (d1) ; �[p;q] (d2)g < �[p;q] (B)
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and (d1d
0
2 � d2d

0
1)

2
6� 0; then by using Lemma 3.6

we can deduce that �[p;q] (h) = �[p;q] (B) > 0: Hence

h 6� 0: By Cramer's method we have

f1 =

��������

w H2 H3 H4

w0 H6 H7 H8

w00 H10 H10 H12

w(3) H14 H15 H16

��������
h

(4.5) = 2

�
d1d2d

0
2 � d

2
2d
0
1

�
h

w(3)+�2w
00+�1w

0+�0w;

where �j (j = 0; 1; 2) are meromorphic functions

in � of �nite [p; q]-order which are de�ned in

(2.1)-(2.3). By (4.5) and Lemma 3.5, we have

�[p;q] (f1) � �[p;q] (w) (�[p+1;q] (f1) � �[p+1;q] (w)) and

by (2.4) we have �[p;q] (w) � �[p;q] (f1) (�[p+1;q] (w) �

�[p+1;q] (f1)): Thus �[p;q] (w) = �[p;q] (f1) and

�[p+1;q] (w) = �[p+1;q] (f1) : �

5. Proof of Corollary 2.1

Proof. We suppose there exists j = 1; 2; 3 such

that dj (z) 6� 0 and we obtain a contradiction. If

d1 (z) 6� 0 or d2 (z) 6� 0; then by Theorem 2.1 we have

�[p;q] (d1f1 + d2f2) = +1 = �[p;q] (d3) < �[p;q] (B)

which is a contradiction. Now if d1 (z) � 0,

d2 (z) � 0 and d3 (z) 6� 0 we obtain also a contra-

diction. Hence dj (z) � 0 (j = 1; 2; 3). �

6. Proof of Theorem 2.2

Proof. By Theorem 2.1, we have

�[p;q] (w) = +1; �[p;q] (B) � �[p+1;q](w) � �M

if p � q � 1 and

�[p+1;q](w) = �[p;q] (B)

if p > q � 1. Set g (z) = d1f1 + d2f2 � ':

Since �[p;q] (') < +1; then by Lemma 3.5 we

have �[p;q] (g) = �[p;q] (w) = +1; �[p+1;q] (g) =

�[p+1;q] (w) : In order to prove �[p;q] (w � ') =

�[p;q] (w � ') = +1 and �[p+1;q] (w � ') =

�[p+1;q] (w � ') = �[p+1;q] (w) ; we need to prove

only �[p;q] (g) = �[p;q] (g) = +1 and �[p+1;q] (g) =

�[p+1;q] (g) = �[p+1;q] (w) : By w = g + ' we get from

(4.5)

(6.1)

f1 = 2

�
d1d2d

0
2 � d

2
2d
0
1

�
h

g(3) + �2g
00 + �1g

0 + �0g +  ;

where

 = 2

�
d1d2d

0
2 � d

2
2d
0
1

�
h

'(3) + �2'
00 + �1'

0 + �0':

Substituting (6.1) into equation (1.2), we obtain

2
�
d1d2d

0
2 � d

2
2d
0
1

�
h

g(5) +

4X
j=0

�jg
(j)

= � ( 00 + A (z) 0 +B (z) ) = F (z) ;

where �j (j = 0; � � � ; 4) are meromorphic functions of

�nite [p; q]-order in �. Since  6� 0 and �[p;q] ( ) <

+1; it follows that  is not a solution of (1.2), which

implies that F (z) 6� 0: Then, by applying Lemma 3.4

we obtain (2.5), (2.6) and (2.7). �

7. Proof of Theorem 2.3

Proof. Suppose that f1 and f2 are two nontrivial lin-

early independent solutions of (1.2). Then by Lemma

3.8, we have

(7.1)

�[p;q]

�
f1

f2

�
= +1; �[p;q] (B) � �[p+1;q]

�
f1

f2

�
� �M

if p � q � 1 and

(7.2) �[p+1;q]

�
f1

f2

�
= �[p;q] (B)

if p > q � 1. Set g = f1
f2
: Then

w (z) =
d1 (z) f1 (z) + d2 (z) f2 (z)

b1 (z) f1 (z) + b1 (z) f2 (z)

=
d1 (z) g (z) + d2 (z)

b1 (z) g (z) + b2 (z)
:

By Lemma 3.5, it follows that

�[p+1;q] (w)

� maxf�[p+1;q] (dj) ; �[p+1;q] (bj) ( j = 1; 2) ; �[p+1;q] (g)g

(7.3) = �[p+1;q] (g) :

On the other hand

g (z) = �
b2 (z)w (z)� d2 (z)

b1 (z)w (z)� d1 (z)
;

which implies by Lemma 3.5 that �[p;q] (w) �

�[p;q] (g) = +1 and

�[p+1;q] (g)

� maxf�[p+1;q] (dj) ; �[p+1;q] (bj) ( j = 1; 2) ; �[p+1;q] (w)g

(7.4) = �[p+1;q] (w) :

By using (7.1)-(7.4), we obtain

�[p;q] (w) = �[p;q] (g) = +1;

�[p;q] (B) � �[p+1;q] (w) = �[p+1;q] (g) � �M

if p � q � 1 and

�[p+1;q] (w) = �[p+1;q] (g) = �[p;q] (B)

if p > q � 1. �
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