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SOME PROPERTIES OF COMBINATION OF SOLUTIONS TO SECOND-ORDER
LINEAR DIFFERENTIAL EQUATIONS WITH ANALYTIC COEFFICIENTS OF
[P,Q]-ORDER IN THE UNIT DISC

BENHARRAT BELAIDI! AND ZINELAABIDINE LATREUCH

ABSTRACT. In this paper, we consider some properties on the growth and oscillation of combination of

solutions of the linear differential equation

f'+ A=) +B(2)f =0,
with analytic coefficients A (z) and B (z) with [p, g] —order in the unit disc A = {z € C: |z| < 1}.

1. INTRODUCTION AND PRELIMINARIES

In the year 2000, Heittokangas firstly investigated the
growth and oscillation theory of complex differential
equation

(1.1)

where Ag (2), -+, Ax_1 (2) are analytic functions in
the unit disc (see, [15]). It is well-known that all solu-
tions of (1.1) are analytic functions (see, [15]). After
him many authors (see, [4], [5], [8], [9], [10], [11], [12],
[13], [16], [22]) have investigated the complex differ-
ential equation (1.1) and the second-order differential
equations

F®) 4 A1 (2) FE D 4o 4 Ag(2) F =0,

(1.2) f"+A)f'+B(2)f =0,

(1.3) f"+A@E)f=0

with analytic and meromorphic coefficients in the
unit disc A. In ([17], [18]), Juneja and his co-authors
investigated some properties of entire functions of
[p, q] —order, and obtained some results concerning
their growth. Later, Liu, Tu and Shi; Xu, Tu and
Xuan; Li and Cao; Belaidi; Latreuch and Belaidi
applied the concepts of entire (meromorphic) func-
tions in the complex plane and analytic functions in
the unit disc A = {2 € C: |z| < 1} of [p,g] —order
to investigate the complex differential equation (1.1)
(see [6], [7], [22], [23], [24], [26])- In this paper, we will
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use this concept to study the growth and the oscilla-
tion of the combination of two linearly independent
solutions f; and f, of equation (1.2) in the unit disc.

In this paper, we assume that the reader is famil-
iar with the fundamental results and the standard
notations of the Nevanlinna's theory on the complex
plane and in the unit disc A = {z € C: |z| < 1}, see
([24], (18], [19], [20], [25]).

In the following, we will give similar definitions
as in ([17], [18]) for analytic and meromorphic func-
tions of [p, g]-order, [p, g]-type and [p, g]-exponent of
convergence of the zero-sequence in the unit disc.

Definition 1.1. ([6],[22] ) Letp > g > 1 be inte-
gers, and let f be a meromorphic function in A,
the [p, q]-order of f(z) s defined by

log, T (r, f)
q 1£r '

Plp,q (f) = limsup

r—1- log

where T (r, f) is the Nevanlinna characteristic
function of f. For an analytic function f in A,
we also define

: logy.1 M (r, f)
Pu,p,q) (f) = limsup e 1 J
r—1- qu 1—7r
where M (r, f) = ‘m‘ax|f(z)| .
zZ|=r

Remark 1.1. It is easy to see that 0 < pj, o (f)

+00 (0 < pumpg(f) < 400 ), for any p
q > 1. By Definition 1.1, we have that pp 1
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p(f) (pmpyy = pu(f)) and pp1 = p2(f)
(Prf21] = pus2 (f))-
For the relationship between p,q (f) and

PM,[p,q (f) we have the following double inequality.

Proposition 1.1. ([6]) Let p > q > 1 be integers,
and let f be an analytic function in A of [p,q|-
order.
(1) If p=q>1, then

Pip.a (f) < Prfp.q) () < Prpg () + 1.
(10) If p>q > 1, then

Plp,a) () = Pas,p,q) () -

Definition 1.2. ([22] ) Letp > q > 1 be integers.
The [p, g]-type of a meromorphic function f(z) in
A of [p,g]-order p (0 < p < +00 ) is defined by

. logy ;T (r, f)
Tlp,q (f) = lim sup%.
(1°gq—1 E)

r—1—

Definition 1.3. ([22]) Let p > q > 1 be inte-
gers. The [p,q]-ezponent of convergence of the
zero-sequence of f(z) in A is defined by

log; N (r, %)
log, % '

q1-—r

Alp,q (f) = limsup

r—1-

where N (r, %) 18 the wintegrated counting function
of zeros of f(z) wn {z:|z| <r}. Similarly, the
[p, g]-ezponent of convergence of the sequence of

distinct zeros of f(z) in A s defined by
log;r N (r, %)
log, 7= '

1—r

X[p,q] (f) = limsup

r—1-

where N (r l) 15 the integrated counting function

' ¥
of distinct zeros of f(z) in {z:|z| <r}.

The study of the properties of linearly indepen-
dent solutions of complex differential equations is an
old problem. In ([2], [3]), Bank and Laine obtained
some results about the product E = f; f» of two lin-
early independent solutions f; and f5 of (1.3) in the
complex plane. In [21], the authors have investigated
the relations between the polynomial of solutions of
(1.2) and small functions in the complex plane. They
showed that w = d; f; + ds f2 keeps the same proper-
ties of growth and oscillation of f; (7 = 1,2), where
f1 and f, are two linearly independent solutions of
(1.2) and obtained the following results.

Theorem 1.1. ([21]) Let A(z) and B (z) be entire
functions of finite order such that p(A) < p(B)
and T(A) < 7(B) < 400 if p(B) = p(4) >
0. Let dj(z) (7 = 1,2) be entire functions
that are not all vanishing identically such that

max{p(di),p(d2)} < p(B). If f1 and fo are two
nontrivial linearly independent solutions of (1.2),
then the polynomaial of solutions w = dif1 + da fa
satisfies

p(w) =p(f1) =p(f2) = +oo
and

pa (w) = p(B).

In the same paper, the authors studied also the
zeros of the difference between the polynomial of so-
lutions w = d; f1 + dz f> and entire functions of finite
order.

The remainder of the paper is organized as fol-
lows. In Section 2, we shall show our main results
which improve and extend many results in the above-
mentioned papers. Section 3 is for some lemmas and
basic theorems. The other sections are for the proofs
of our main results.

2. MAIN RESULTS

A natural question arises: What can be said about
similar situations in the unit disc A for equation (1.2)
in the terms of [p, g] —order? Before we state our re-
sults, we define h and 9 (z) by

H, H, Hz; H,
b Hs Hs H; Hg
| Hy Hyp Hii Hp |’

Hi3 Hiy His His

where
Hy =dy, Hy =0, H3 =d,
H;=d}, Hy=dy, Hy=d! —diB,
Hip =2d, — di A, Hy = di — d»B,
Hiy = 2d, —dyA, Hyy = d® —3d,B+d,AB—d, B,
Hyy =3d! —2d)A—diB+diA* — d 4,
His =dY — 3d,B + dyAB — dyB',
Hig = 3dy — 2dyA — doB + do A% — dp A/

and

P (z) =2 )+ a0 + $190' + oo,

where ¢ # 0, d; ( = 1,2) are analytic functions of
finite [p, g]-order in A and

2 (dydodly, — d2d)) A — 3d1dpdl + 3d3d!
(2.1) ¢ = (didody 21)h 1028, 2%
_ 6do (dydy — dydY) + 2d> (didy — dady) B

N h

() +2% (dydy — dod}) A’ + 3dy (dod!! — dyd) A
. . ,

(dydodl, — 2}
h

¢1

H4:0a H5 :dg_) HG :dl)
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%[(dldgdg ~ 3dydyd! + 2dydldl) A
+ (4d1(dy)? + 3d5dy — 3d1dod)y — 4d2d;d)) B
+2 (dadydy — da(d3)?) A’
+2 (didady — d2dy) B' + 6(dy)?dy
—2d1dyds’ + 2dod) dy’

(2.3) —3dydydy — 6d dydl + 3d1(d5)?].

Theorem 2.1. Let p > g > 1 be wntegers, and
let A(z) and B (z) be analytic functions in A of
finite [p,q]-order such that ppq (A) < pp,q (B)
and 0 < Ty g (4) < Tip,q] (B) < +0 if Plp.q] (B) =
Plp,q) (A) > 0. Let d; (2) (5 = 1,2) be analytic func-
tions that are not all vanishing identically such

that max{ppp.q) (d1),plp.q (d2)} < Plp,g (B)- If fa
and f, are two nontrivial linearly independent so-

lutions of (1.2), then the polynomaial of solutions
(2.4) w=difi+daf2

satisfies

Pio.a) (W) = Plp,g) (f1) = Plp,g (f2) = +o0
and
Pip.al (B) < plpt1,q) (W) < o,
the  following oy =

max {pusp.q) (A), Pm,p,g (B)}. Furthermore, if
p>q>1, then

where and n

Plpt+1,q (W) = Plp,q) (B) -

Example 2.1. ([16]) For f > 0, the func-
tions f1(z) = exp(exp ((1—2)"?)) and f2(2) =

exp ((1 — z)7P) exp(exp ((1 —2)P)) are lnearly
independent solutions of (1.2) satisfying

P (f1) = iy (f2) = 0
and

P2,y (f1) = o2, (f2) = B,
where
2 1-2)%
poo PO s e
(1— z)Pt1 (1—2z)Att  1-2

and

B2 exp (2(1 — 2)7F)
(1 z)2B+2

It 1s clear that pj11) (A) = pp1,1 (B) and 71,17 (4) <
T1,1] (B). Then, by Theorem 2.1 for any two
analytic functions d; (z) (i = 1,2) of finite order
P11 (di) < o0 (2 = 1,2) that are not all vanishing
identically such that max {P[1,1] (d1), P11 (dz)} <
P11 (B), the combination w = dyfy + dafs is of
wnfinite order pj1 1) (w) = +oo and ppp 1) (w) = B.

B(z) =

From Theorem 2.1, we can obtain the following
result.

Corollary 2.1. Let p > q > 1 be integers, and let
fi(z) (1 =1,2) be two nontrivial linearly indepen-
dent solutions of (1.2), where A(z) and B(z) #0
are analytic functions of finite [p,q]—order in
A such that pppq (A) < Plp,g (B) or pipq (4) =
Plp,g (B) > 0 and 0 < Tjpq (A) < T[p,q (B) < +o00,
and let d; (z) ( =1,2,3) be analytic functions in
A satisfying

max {plp,q (d5) 1 7 = 1,2,3} < plp,q) (B)
and
da(2) fa+di(2) f1 =d3(2).
Then d; (2) =0 (3 =1,2,3).

Theorem 2.2. Under the hypotheses of Theorem
2.1, let ¢(z) £ 0 be an analytic function in A
with finite [p,q| —order such that ¥ (z) Z 0. If f1
and f» are two nontrivial linearly independent so-
lutions of (1.2), then the polynomaial of solutions
w = dy f1 + da f> satisfies

(2.5)

Apgl (W = ©) = Ap,g (W — @) = ppp,g (W) = +00
and

Plp,q] (B) < X[1a+1,q} (w—¢) =

(2.6) Alpt+1,q] (W — @) = plp+1,q (W) < am.

Furthermore, if p > q > 1, then

X[p+1,q] (w—9p)= )\[p+1,q1 (w—¢)

(2.7) = Plp+1,q] (W) = Pp,q1 (B) -

Theorem 2.3. Let p > q > 1 be integers, and
let A(z) and B(z) be analytic functions in A of
finite [p,q] —order such that ppq (A) < pp,q (B).
Let d;(z),bj(z) (j=1,2) be finite [p,q] —order
analytic functions in A such that dy (2)bs(z) —
dx(2)b1(2) £ 0. If f1 and fa are two nontrivial
linearly independent solutions of (1.2), then

difi + dafo — 4o
Plpd] bifi +baf2

and

dy f1 + d2f2> < au
bifi+bafa) — '

Furthermore, if p > q > 1, then

difi +dafo
Pl+Ld) by f1 + bafo

Pip.al (B) < Plpi1,q) (

= Plp,q) (B).
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3. AUXILIARY LEMMAS
Lemma 3.1. ([14], [15], [25]) Let f be a meromor-
phic function in the unit disc and let k € N. Then

f(k)>
mlr,— | =S(r,f),
(2) s

where S(r,f) =0 (10g+T(r, )+ log (ﬁ)) , pos-
sibly outside a set E; C [0,1) with fEl dr o 1o .

1—7

Lemma 3.2. (1], [15]) Let g : (0,1) - R
h :(0,1) — R be monotone increasing functions
such that g(r) < h(r) holds outside of an excep-
tional set By C [0,1) for which sz A - 1o .

and

1-r
Then there exists a constant d € (0,1) such that

ifs(r)=1—d(1—r), then g(r) < h(s(r)) for all
r €[0,1).

Lemma 3.3. ([6]) Let p > g > 1 be integers.
If Ag(2), - ,Ax_1(2) are analytic functions of
[p,q] —order in the unit disc A, then every solu-
tion f Z0 of (1.1) satisfies

Plp+1,q] (f) = PM,[p+1,q] (f)
Smax{pM:[P:Q] (‘AJ) .7: 0)1)"' )k_ 1}

Lemma 3.4. ([22]) Let p > q > 1 be integers. Let
Aj (3=0,---,k—=1), F #£0 be analytic functions
mn A, and let f(z) be a solution of the differential
equation

FO LA () fE D4 b A (2) f A (2)f=F
satisfying

max {p[p,q} (Aj) (7=0,---,k—-1) » Plp,g] (F)}

< Plp,g (f) = p < +oo.
Then we have
X[p,q} (f) = Alp,g] (f) = Plp.q] (f)

and

A+1,q (F) = Ap1,g] (F) = Ppt1,q (f) -

Lemma 3.5. ([22]) Let p > g > 1 be integers, and
let f and g be non-constant meromorphic func-
tions of [p,q]-order in A. Then we have

Plp,g) (f +9) < max {pp.q (), Ppp.q (9)}

and

Plp,q (fg) < max {P[p,q] () Pw.a (9)} .

Furthermore, if ppp,q (f) > pp,q (9), then we ob-
tain

Pip,gl (f +9) = Plp.g (£9) = ppo.gr (f) -

Lemma 3.6. ([22]) Let p > q > 1 be integers, and
let f and g be meromorphic functions of [p,q]-
order in A such that 0 < pppq (f),Pp,q (9) <
+00 and 0 < Tipq (), Tip,q (9) < +00. Then, we
have

(Z) If Plp,q (f) > Plp,qg] (9) , then
Tp,q] (f+9)= Tlp.q] (fg) = Tlp.q] (f).

(1) If ppp,q (f) = Ppg1 (9) and Tip.q (f) # Tip.q1 (9),
then

Pip,al (f +9) = Piw,al (f9) = Pip,a) (f) = Plp,a) (9) -
Lemma 3.7. ([22]) Let p > g > 1 be integers, and
let A;j(2) (3 =0,---,k—1) be analytic functions
. A satisfying

max {pipq) (A7) 5 =1,k = 1} < pppq (4o)-

If f # 0 15 a solution of (1.1), then ppq (f) =
+o0 and

Plv,a) (Ao) < Plpr1,q) (f)
S max'{pM,[p;(ﬂ (AJ) ] = 07 7k_ 1}
Furthermore, if p > q > 1, then

Pio+1,a (f) = Pip,g) (Ao) -
Lemma 3.8. Let p > g > 1 be integers, and let
A(z) and B(z) be analytic functions in A of fi-

nite [p,q] —order such ppq (A) < pp,q (B). If f1
and f» are two nontrinal linearly independent so-

lutions of (1.2), then % s of infinite [p, q|-order
and

f
Plp,a] (B) < Plp+1,q] (é) < au.

Furthermore, if p > q > 1, then

Plp+1,q] (2) = Plp,q] (B) -

Proof. Suppose that f; and f, are two nontriv-
ial linearly independent solutions of (1.2).
Plp,q) (B) > Plp,q (A), then by Lemma 3.7

Plp,d (f1) = Plp,q] (f2) = +oo, Plp,q] (B) <

Since

(3.1) Pip+1,q] (f1) = Plp+1,q (f2) < amr.
Furthermore, if p > ¢ > 1, then

Pp+1,q] (f1) = Ppr1,q (f2) = Ppg (B) -
On the other hand
f1>l W (f1, f2)
3.2 fy _ _TULR)
(3.2) (fz 3
where W (f1, f2) = fify — fof{ is the Wronskian of
f1 and f,. By using (1.2) we obtain that

W'(f1, f2) = —A(2) W(f1, f2),
which implies that

(3.3) W(fi, f2) = Kexp(—/A(z)dz),
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where [ A(z)dz is the primitive of A(z) and K €
C\ {0}. By (3.2) and (3.3) we have

Since plp,q(f2) = +00, Pp+1,9(f2) 2 Plpg (B) >
Pip,q) (A) if p > g > 1 and ppr1,4(f2) = ppp,g (B) >
Plp.q) (A) if p > g > 1, then by using (3.1) and Lemma
3.5 we obtain from (3.4)

Plp,q] (2) = Plp,q (f2) = +o0

(3.4)

f
Pip,al (B) < Pipt1,q) (f:) = Plpr1,q/(f2) < am
ifp>¢g>1and

f
Plp+1,q] (f:) = plp+1,q/(f2) = P, (B)
fp>qg>1. |

Lemma 3.9. ([6]) Let p > q > 1 be integers. Let
f be a meromorphic function in the unit disc A
such that pppq (f) = p < +0o, and let k > 1 be an
integer. Then for any € > 0,

R )

holds for all v outside a set BEs C [0,1) with
fE3 1d—rr < too .

Lemma 3.10. Let p > g > 1 be integers, and let
f be a meromorphic function in A with [p,q] -
order 0 < ppq (f) = p < +oo0 and [p,q] - type
0 < Tlp,q (f) =7 < +00. Then for any given § < 7,
there exists a subset By of [0,1) that has an in-
fintte logarithmic measure fE4 % = 400

p
that log, T (r,f) > B [1ogq,1 (1%)] holds for
allr € B,.

such

Proof. By the definitions of [p, g] - order and [p, q] -
type, there exists an increasing sequence {r, :;o:ol C
[0,1) (rm — 17) satisfying = + (1 — L) rp < rpyy

and

1 T (rm,
lim ng,1 (7‘ f) -7

m—+oco (10gq_1 (ﬁ))p
Then there exists a positive integer mg such that for
all m > mg and for any given 0 < ¢ < 7 — 3, we have
(3.5)
1 p
1ng—l T(T‘Vn7f) > (T - 6) <logq—1 (1 —r )) .

m

For any given 8 < T—¢, there exists a positive integer
my such that for all m > m; we have

g1 (1-2) ()]

108q71 ( 11T)

(3.6)

Take m > my = max {mg,m1}. By (3.5) and (3.6),

for any r € [rm, % + (1 - l) Tm], We have

m

logp—l T (T7 f) 2 logp—l T (T‘ma f)

> (1 —¢) (1qu1 (1 _1Tm>)p
oo (- ) ()
>0 (e, (27))

Set By = JTJO [rm, % + (1 — %) rm] , then there

holds o
m 177)
pliad dt
mlE4 Z / 71 ¢
m=my
m
1 —
Z o8 m—1

m=ms

O

Lemma 3.11. Let p > q > 1 be integers, and
let A(z) and B (z) be analytic functions in A of
finite [p,q] —order such pppq (A) < plp,q (B) and
0 < Tpg) (4) < Tpg (B) < +0 if pppg (B) =
Pp,q (A) > 0. If f #0 15 a solution of (1.2), then

Plp.g) (f) = +00 , pp,g (B) < ppi1,q/(f) < am
and
Piot+1.a)(f) = Pip.q) (B)
ifp>g2>1.

Proof. If pip q (B) > p[p,q (A), then the result can be
deduced by Lemma 3.7. We prove only the case when

Plp.g) (B) = Plp,g) (A) = p and Tjp,q) (B) > Tp,q (4) >
0. Since f # 0, then by (1.2)

f// f/)
B=—(—+A
(747
Suppose that f is of finite [p, g] —order ppp q(f) =

u < +o0o. Then by Lemma 3.9
1
7(,8) < T (r, 4)+0 (exp, , {(+e)tog, (125 )})

holds for all 7 outside a set B3 C [0, 1) with fE3 1‘3 <

+00, which implies by using Lemma 3.2 the contra-
diction

Tlpg] (B) < Tp,q (4) -
Hence pjpq) (f) = +0o. By Lemma 3.3, we have

Plp+1,4] (f)= PM,[p+1,q] (f)

< max {pu,fp,q) (4), Pajpa (B)} -
On the other hand, since pp 4 (f) = +oo, then by
Lemma 3.1
(3.7)

T (r, B) < T (r, A)+O <log+T(r,f) + log (1i ))
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holds for all r outside a set E; C [0,1) with
fEl 1djr < +oo. By T[p,q] (B) > T[p,q} (A) > 07 we
choose ap,; satisfying 7jp g (B) > ag > a1 >
Tip,q) (4) such that for » — 17, we have

58 7 2o o 1o (1))

By Lemma 3.10, there exists a subset E4 C [0,1) of
infinite logarithmic measure such that

59 70,8 > o1 o (o, (1))}

By (3.7)-(3.9) we obtain for all r € E4\E;

e o (1 (25 )}
< exp, {0‘1 <1°gql (1:))%’}

1
By using (3.10) and Lemma 3.2, we obtain

Pipa (B) < Plp+1,q) (f)-

(3.10)

Hence

Pip,al (B) < ppr1,q) (f) Smax {pu,p,g (A), Prp.q) (B)}

ifp>qg2>1and ppiig (f) = Plp,q] (B)ifp>gq>
1. O

4. PROOF OF THEOREM 2.1

Proof. Inthe case when d; (2) = 0ords (2) =0, then
the conclusions of Theorem 2.1 are trivial. Suppose
that f; and f> are two nontrivial linearly independent
solutions of (1.2) and d; (2) Z0 (j = 1,2). Then by
Lemma 3.11, we have
Piv.a) (f) = +00, pip,g) (B) < pipr1,q(f) < am
fp>¢g>1and
Plo+1,0(f) = Pip.g) (B)

if p > g > 1. Suppose that d; = cdy, where c is a
complex number. Then, we obtain

w=difi +dafa=cdofi +dofs = (cfi+ f2)da.

Since f = cft + f2 is a solution of (1.2) and
Pp,ql (d2) < Pp,q (B), then we have

Plp.q) (W) = plp,q] (cf1 + f2) = +00,

Pipa) (B) < Plp+1,q) (W) = Plpt1,q (¢f1 + f2) < aum
fp>¢g>1and

Plot+1,q) (W) = Plp+1,q (cf1 + f2) = plp,g (B)

if p > ¢ > 1. Suppose now that d; #Z cd> where cis a
complex number. Differentiating both sides of (2.4),
we obtain

(41) w'=difitdif+dyfotdafs
Differentiating both sides of (4.1), we obtain
(4.2) w" =dyfi+2d, fi+di f]' +dy fo+2dy f+da 7.

Substituting f; = —A(z) f; — B (z) f; (7 = 1,2) into
equation (4.2), we have

w" = (d{ —d1B) f1 + (2dy — d1 A) f]

(4.3) + (dy — doB) fo + (2dy — dy A) f5.

Differentiating both sides of (4.3) and by substituting
fi =—A(2) f; = B(2) fj (1 = 1,2), we obtain
w" = (d§3) _3d!B +dy (AB — B')) £
+(3d{ —2d1A+dy (A - A' - B)) f;

+(d —3d,B + &, (AB - B)) f;

(44)  +(3d) —2dyA+ds (A2 — A" — B)) fh.

By (2.4) and (4.1)-(4.4) we have

w=dif1+daf,
w' =difi +difi +dof2 + daf,
w" = (& — diB) fr + (2d, — d, A) f
+(dy — daB) fo + (2d5 — ds A) £,

+(3d{ —2d1A+di (A> - A' - B)) fi
+ (df) —3d,B +dy (AB — B')) 72
+ (32 — 2d, A+ dy (A2 — A' — B)) fl.

To solve this system of equations, we need first to
prove that A Z 0. By simple calculations we obtain

H, H Hy H

,_| Hs He Hr Hg
B H9 HlO Hll H12
H13 H14 H15 H16

=2(dydy — dod))’ B
+ (d3did{ + didydy — didod dy — didpdydy) A
—2(dyd, — dad)? A' + 2d1dyddY + 2dydpdld”
—6d1dyd’dl — 6d;d’ dyd! — 6dyd, dyd”
+6dy (dh)2d! + 6dy(d,)?dY) — 2d2d, d!
—2d2d,dy 4 3d3(dy)? + 3d2(dy)2.

It is clear that (did) — dad}) # 0 because dy # cds.
Since

max{pjp,q (d1); Plp,g (d2)} < P[p,q) (B)
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and (did, — dod})® # 0, then by using Lemma 3.6
we can deduce that pj, g (k) = p[p,q (B) > 0. Hence
h # 0. By Cramer’s method we have

w H2 Hg H4
w' H@ H7 Hg
w"  Hyp Hipp Hip
w® Hiyy His Hie
fi= 3
! 2 g/
(45) =2 (dlddeh_ Eh) @ + o + 1w’ + gow,

where ¢; (7 =0,1,2) are meromorphic functions
in A of finite [p,q]-order which are defined in
(2.1)-(2.3). By (4.5) and Lemma 3.5, we have
Plp.al (f1) < Pipg) (W) (Plpt+1,q] (f1) < Ppt1,) (w)) and
by (2.4) we have pp,q (w) < pip,q] (f1) (Pp+1,q (W) <

Plp+1,q (f1))- Thus ppg (w) = ppg(f1) and
Plp+1,q] (W) = Plp+1,q (f1) - g

5. PrRooF oF COROLLARY 2.1

Proof. We suppose there exists 7 = 1,2,3 such
that d; (z) # 0 and we obtain a contradiction. If
di (2) Z0ords (z) £ 0, then by Theorem 2.1 we have

ql (dlfl + d2f2) = +00 = P[p,q (d3) < Plp,q] (B)
which is a contradiction. Now if d;(z) = 0,
dy(z) = 0 and d3 (z) Z 0 we obtain also a contra-
diction. Hence d; (2) =0 (7 = 1,2,3). O

6. PrRooF oF THEOREM 2.2

Proof. By Theorem 2.1, we have

Plp.g] (W) = +00, plp,q (B) < plpt1,9)(w) < am
ifp>¢g>1and

Plp+1,q) (W) = Plp,q (B)

ifp>gq > 1 Set g(z) = difi +dofo — o
Since ppp,q (9) < +oo, then by Lemma 3.5 we
have ppg(9) = Plp,g (W) = 400, p[pt1,q (9)

Pip+1,q) (w). In order to prove Apg (w—¢) =
Apg(w—¢) = +4oo and Apiiq(w—¢) =
Ap+1,4 (W —9) = ppi1,q (w), we need to prove
only Ap,q) (9) = App,q) (9) = +00 and Ajpi1,(9) =

Ap+1,9 (9) = Pp+1,q (W) . By w = g + ¢ we get from
(4.5)
(6.1)

did>d, — d2d!
fi= 2%9@ + ¢29" + ¢19' + dog + ¥,
where

d3d,)

B+ da9" + $190' + dop.

(dydadl —
=9
v h

Substituting (6.1) into equation (1.2), we obtain

2 (dydyd, — d2d, 4 ,
( Z 2 1)9(5)+Zﬂjg(1)
=0

=—-W"+A(2)Y' +B(2)¥)=F(2),
where 8; (7 =0, - ,4) are meromorphic functions of
finite [p, q]-order in A. Since ¥ Z 0 and ppp q) (¥) <
+00, it follows that ¢ is not a solution of (1.2), which
implies that F'(z) # 0. Then, by applying Lemma 3.4
we obtain (2.5), (2.6) and (2.7). O

7. PROOF OF THEOREM 2.3

Proof. Suppose that f; and f, are two nontrivial lin-
early independent solutions of (1.2). Then by Lemma
3.8, we have

(7.1)

f1 fi
Plp,q] <f2 = 100, Plp,q (B) < Plp+1,q) 5 <oaum
ifp>¢g>1and
f1
Plp+1,q] (f = Plp,q (B)
2

fp>qg>1. Setg—f1 Then

(7.2)

G@AR)+hE) LR
YOS A T h () £ (2)
_ di(2)9(2) + da (2)
bi(2) g(2) +b3(2)
By Lemma 3.5, it follows that
Plo+1,q) (W)
<max{ppi1,q (&), Pp+1,q (05) (1 =1,2), pps1,q (9)}
(7.3) = Plp+1,q (9)-
On the other hand
_ b(x)w(z) —da(2)
1) = P w ) —d )
which implies by Lemma 3.5 that ppq (w) >
Plp,q (9) = +oo and
Plo+1,q) (9)

< max{pp11,g (), Pp+1,q) (85) (7 = 1,2), ppr1,9) (W)}

(7.4) = Plp+1,q (W) -

By using (7.1)-(7.4), we obtain
Pip.ql (W) = Pip,g) (9) = +00,

Plp,g) (B) < Pip+1,q) (W) = plp+1,q) (9) < am
ifp>¢g>1and

Plo+1.a (W) = Ppt1,q (9) = Plp,q (B)
fp>qg>1. |
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