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A NOTE ON A SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS

DONKA PASHKOULEVA

ABSTRACT. The object of this paper is to obtain sharp results involving coefficients bounds, growth and
distortion properties for a subclass of the class of close-to-convex functions. We also consider the Fekete-

Szegd problem for the same class.

1. INTRODUCTION AND DEFINITIONS

Let S denote the class of functions of the form
(o]
fz)=z+ Zakzk
k=2

which are analytic and univalent in the open unit
disk B ={z:|z] < 1}.

Let C denote the class of convex functions [1],
f(2) € C if and only if for z € E,

z2f"(z
§R{1—|— f’(i))} >0.
Let S* denote the class of starlike functions [2]:
2f'(z)
f(z)
A function f(z) analytic in E is said to be close-

to-convex in E, if there exists a function g(z) € S*
such that for z € E

f(2) € $* if and only if for z € E, R >0.

zf'(2)
9(2)

The class of such functions is denoted by K, see
[3]. The classes S, K, S* and C are related by the
proper inclusions

CCcS*CKCcCS.

R >0.

Now we will cons(i)éier a class K defined as follows.

Let f(2) =z + Z a,2z" be analytic in E. Then
n=2
f(z) € K if and only if there exists a function
g(z) € C such that for z € F

(1.1) 2f'(2)

it
9(2)
Date:

>0.
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Since C C §*, it follows that K C K and so, the
functions in X are univalent.
Let P be the class of functions h(z) given by

h(2)

oo
1+ Z ¢nz2", which are analytic and have
1

n—=
positive real part in E.

Let Q be the class of functions w analytic in F
such that w(0) = 0 and |w(z)| < |z| for z € E.

2. KNOWN RESULTS

Theorem 2.1. ([4]) If g(z) € C, with g(2)

z+ Z b, 2™, then:
n=2

(i) [bn] <1 (n=2,3,...),
1

(i) Joa — 2] < max (11— )

1

(iii) |b3 - ub§| < 3 (1—152)?) .
Theorem 2.2. ([5]) Let h(z) € P, with h(z) =
1+ Z cn2™. Then

n=1

(@) lenl <2 (n=1,2,..),
(“) %<2 |C]-|2
1) [ — —= - —.
2T o= 2
14z

Egquality holds when h(z)

T 1-—2z
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Theorem 2.3.

z+ Z b,z™.
n=2

([4]) Let g(z) € C, with g(z) =

Then, for z =re*® € E,

T T
< <
ity < @< T
1 1
< ! <
(1 _|_ 7’)2 — |g (Z)| — (1 _ 7’)2 )
1 < || < 1
14+ — 9(2) - 1l-r
Equality holds if and only if g(z) = ;,
(1—€2)
le] = 1.
Theorem 2.4. ([2]) Function h(z) € P 1f, and only
if
14+ w(z)
h(z) = ———= E
@ =1—oGy €
where w € (2.

Theorem 2.5. ([6]) If h(z) € P, then for z = re®?
er

1—r 1+r
() < |f;§z>| < 1;,
. zh!(z 7
(11) h(i)) ;g};}:z )
z
(ii) [K'(z)] < - E’Q) .
Equality ts attained when h(z) = 11_7&:, le] = 1.

3. SOME OF THE BASIC PROPERTIES
OF FUNCTIONS IN K

Theorem 3.1. Let f(z) € K. Then for
z=re¥ c B,
1- 1+r
m—“c(” (1_7.)27

2r 2r
- — < < — .
In(1+r) + 70— < |f(2)] Il —r) + 7

Each inequality 1s sharp for fo(z) defined by

(3.1) fo(2) :51og(1_mz)+1f‘"”m, with |z] = 1.

Proof. Since f(z) € K, (1.1) gives
12f'(2)] = |()()|,
for g(z) € C and h(z) € From Theorem 2.3 and

Theorem 2.5 we have

1-— 1+
ey <O
Integrating (3.2) along the straight line segment from
the origin to z = re*® and using the right inequality
of (3.2) we obtain

1< [ irelel < [ g

(3.2)

=In(1—
n(l—r)+

which gives the upper bound for |f(z)].

In order to obtain the lower bound for |f(2)|, we
proceed as follows: let z; be such that |z;| = r and
satisfles |f(z1)| < |f(2)| for all z with |2| = r. Writ-
ing w = f(z), it follows that the line segment A from
w = 0to w = f(z) lies entirely in the image of f.

Let A be the pre-image of A. Then

5 2 If(ea)l = [ 1] = \ \|dz|

To1—t¢ 2r
> ———dt = —In(1
_/O tExT n(L+7) +

which is the required lower bound.

Equality is attained on choosing g(z) = ] z
—zz
1
and h(z) = 1+ % for |z| = 1 in the representation
zf'(z) = g(2)h(z). =

Theorem 3.2. Let f(z) € K, with

2)=z+ Zanz
n=2

". Then for z € E,

1
janl <2~ = for
n

Equality s attained for fo(z) defined in (3.1).

n>2.

Proof. 1t follows from (1.1) that we can write

(3.3) 2f'(z) = g(2)h(z)

o
for g(2) € C, with g(2) = 2+ Z b,z™ and h(z) € P,

n=2
with hA(z) =1+ Z CnZ
Equating the coefﬁaents of z” in (3.3), we have
for n > 2,
n—2
nan, = b, + Z bn,kc’c +Cn_1.
k=1
Thus for n > 2:
n—2
nlan| < bu| + Z bn—&llck| + len—1]
k=1
n—2
< 342) |bng/ <201,
k=1
. 1
ie. lan| <2 ——,
n
using Theorem 2.1 and Theorem 2.2. O

We now consider the Fekete-Szegt problem for the
class K.
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Theorem 3.3. Let f(z) € K and be given by

f)=z+ Z an2™. Then
n=2

5 9 2

c_Z <z

LN

2 1 2 2
as — paj| < §+@72f§§/$§§,

5 .2

- —<u<l.

5’ zfs_#_

For each u, there is a function in K such that
equality holds.

Proof. In (1.1) Theorem 2.4 gives

2f'(z) _ 1+ w(z)

9(2)  1-w(2)’

so that w is analytic, w(0) = 0 and |w(z)] < 1 for
z € E. Let w(z) be given by:

h(z) =

w(z) = Zanz" for z€E.
n=1

Then Theorem 2.2 gives

lar] <1 and  |ap| <1—|ou?,

see [5]. Now (3.3) gives
2f(2) = 9(2) ={zf'(2) + 9(2)} w(2).

Equating the coefficients of 22 and z® on both sides
we obtain:

2(12 = bg + 2&1 y
and
3(13 = b3 + 2&2 + 2&% + 20l1b2 s
so that
1 3
ag — pa; = 3 (bz - 4ub§> +

(3.4) +§ (a2 + (1 - 2“) ai) + (i - u) aby .

. 2 2 .
We first consider the case 9 <wp< 3 Expression
(3.4) gives:

1 3
las —pa3| < 3 bs—zﬂbg +
2 1
+§ a2—§(3y—2)af
(2 —3u) 2
b
NCELDIW
4—3u 2 2, (2-3p)
< - - — =®(t
< + =
say, with t = |oy| where we have used Theorem

2.1 and Theorem 2.2 and the fact that |by| < 1 for

g(z) € C. Since the function ®(¢) attains its maxi-
2—3u
6u
|a3 - ILI'a§| < @(t0)7

mum at {5 =

2
which proves the theorem if 4 < —=. Choosing

3
2-3
= 6#“ = b, = 1in (3.4),

shows that the result is sharp. We

_ 2
,ay =1—af and by

aq
note that since

2
|ai| < 1, we have y > 9

2
Next we suppose that y < 5 Again, (3.4) gives:

9 2 9
ag — paj| < ok a3—9a§+(1—2ﬂ)|a3|
9 7 9\5 5 9
< Zpxiaf(1-Zp)2=2-7
= 2“X6+< 2“)3 3 4t

where we have used the result already proved in case
U= g, and the fact that for f € I?, the inequality
lag] < g holds (Theorem 3.2). Equality is attained
on choosing by = b3 =1, a3 = 1 and ay = 0 in (3.4).

Now, suppose that g < p < 1. We deal first with
the case 4 = 1. From (3.4), we have

1 3 2 1 1
asz — ag = g <b3 — 4b§> + g (Olg — 20(%) — galbz,

or

1 1 2 1 ob
az—a3 = 3 (b3 —bg)—i-ﬁbg—l—f (az - a%)— 12 ,

3 2 3
and so
1 |b2|2 2 1 |Ol1b2|
2 2 2
|a3_a2|§§|b3_b2|+?+g @z — oyt

Using Theorem 2.1 and Theorem 2.2, and the fact
that |as| < 1— |a1|?, we obtain:

1 b2 , 2 aa|? | |aabsl
a2l < S (1—|bA) 4122 10152}
jas —az] < G (=) + - T3 -3 3
7 1 b2]\2 7 |ba)?
= = - ENLC] I S G el I
o 18 “3\lnl-7% ) gt 4
5
6

<

since |by| < 1.
Next,

2
03 - pad = (3 =2)(aa ~af) + 31— ) (a2 — 303

and the result follows at once on using the theorem
already proved in the case p =1 and p = %

Equality is attained in this case when by = b3 =1,
as =1 — a? with

2-3 —
_ ko V(6r—4)
61 6L

ay
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