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A NOTE ON A SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS

DONKA PASHKOULEVA

Abstract. The object of this paper is to obtain sharp results involving coe�cients bounds, growth and
distortion properties for a subclass of the class of close-to-convex functions. We also consider the Fekete-
Szegö problem for the same class.

1. Introduction and definitions

Let S denote the class of functions of the form

f(z) = z +

1X
k=2

akz
k

which are analytic and univalent in the open unit

disk E = fz : jzj < 1g.

Let C denote the class of convex functions [1],

f(z) 2 C if and only if for z 2 E;

<

�
1 +

zf 00(z)

f 0(z)

�
> 0 :

Let S� denote the class of starlike functions [2]:

f(z) 2 S� if and only if for z 2 E;<
zf 0(z)

f(z)
> 0 :

A function f(z) analytic in E is said to be close-

to-convex in E, if there exists a function g(z) 2 S�

such that for z 2 E

<
zf 0(z)

g(z)
> 0 :

The class of such functions is denoted by K ; see

[3]. The classes S, K, S� and C are related by the

proper inclusions

C � S� � K � S :

Now we will consider a class eK de�ned as follows.

Let f(z) = z +

1X
n=2

anz
n be analytic in E. Then

f(z) 2 eK if and only if there exists a function

g(z) 2 C such that for z 2 E

(1.1) <
zf 0(z)

g(z)
> 0 :

Since C � S�, it follows that eK � K and so, the

functions in eK are univalent.

Let P be the class of functions h(z) given by

h(z) = 1 +

1X
n=1

cnz
n, which are analytic and have

positive real part in E.

Let 
 be the class of functions ! analytic in E

such that !(0) = 0 and j!(z)j � jzj for z 2 E.

2. Known results

Theorem 2.1. ([4]) If g(z) 2 C, with g(z) =

z +

1X
n=2

bnz
n, then:

(i) jbnj � 1 (n = 2; 3; : : :) ;

(ii)
��b3 � �b22

�� � max

�
1

3
; j1� �j

�
;

(iii)
��b3 � �b22

�� � 1

3

�
1� jb2j

2
�
:

Theorem 2.2. ([5]) Let h(z) 2 P , with h(z) =

1 +

1X
n=1

cnz
n. Then

(i) jcnj � 2 (n = 1; 2; : : :) ;

(ii)

����c2 � c21
2

���� � 2�
jc1j

2

2
:

Equality holds when h(z) =
1 + z

1� z
.
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Theorem 2.3. ([4]) Let g(z) 2 C, with g(z) =

z +

1X
n=2

bnz
n. Then, for z = rei� 2 E,

r

1 + r
� jg(z)j �

r

1� r
;

1

(1 + r)2
� jg0(z)j �

1

(1� r)2
;

1

1 + r
�

��� zg0(z)
g(z)

��� �
1

1� r
:

Equality holds if and only if g(z) =
z

(1� "z)
,

j"j = 1.

Theorem 2.4. ([2]) Function h(z) 2 P if, and only

if

h(z) =
1 + !(z)

1� !(z)
; z 2 E ;

where ! 2 
.

Theorem 2.5. ([6]) If h(z) 2 P , then for z = rei�

2 E

(i)
1� r

1 + r
� jh(z)j �

1 + r

1� r
;

(ii)

����zh0(z)h(z)

���� �
2r

1� r2
;

(iii) jh0(z)j �
2<h(z)

1� r2
:

Equality is attained when h(z) =
1 + "z

1� "z
, j"j = 1.

3. Some of the basic properties

of functions in eK
Theorem 3.1. Let f(z) 2 eK. Then for

z = rei� 2 E,

1� r

(1 + r)2
� jf 0(z)j �

1 + r

(1� r)2
;

� ln(1 + r) +
2r

1 + r
� jf(z)j � ln(1� r) +

2r

1� r
:

Each inequality is sharp for f0(z) de�ned by

(3.1) f0(z) = x log(1�xz)+
zx

1� xz
; with jxj = 1 :

Proof. Since f(z) 2 eK, (1.1) gives

jzf 0(z)j = jg(z)h(z)j ;

for g(z) 2 C and h(z) 2 P . From Theorem 2.3 and

Theorem 2.5 we have

(3.2)
1� r

(1 + r)2
� jf 0(z)j �

1 + r

(1� r)2
:

Integrating (3.2) along the straight line segment from

the origin to z = rei� and using the right inequality

of (3.2) we obtain

jf(z)j �

Z z

0

jf 0(z)jjdzj �

Z r

0

1 + t

(1� t)2
dt

= ln(1� r) +
2r

1� r
;

which gives the upper bound for jf(z)j.

In order to obtain the lower bound for jf(z)j, we

proceed as follows: let z1 be such that jz1j = r and

satis�es jf(z1)j � jf(z)j for all z with jzj = r. Writ-

ing ! = f(z), it follows that the line segment � from

! = 0 to ! = f(z) lies entirely in the image of f .

Let � be the pre-image of �. Then

jf(z)j � jf(z1)j =

Z
�

jd!j =

Z
�

����d!dz
���� jdzj

�

Z r

0

1� t

(1 + t)2
dt = � ln(1 + r) +

2r

1 + r
;

which is the required lower bound.

Equality is attained on choosing g(z) =
z

1� xz

and h(z) =
1 + xz

1� xz
for jxj = 1 in the representation

zf 0(z) = g(z)h(z). �

Theorem 3.2. Let f(z) 2 eK, with

f(z) = z +

1X
n=2

anz
n. Then for z 2 E,

janj � 2�
1

n
for n � 2 :

Equality is attained for f0(z) de�ned in (3.1).

Proof. It follows from (1.1) that we can write

(3.3) zf 0(z) = g(z)h(z)

for g(z) 2 C, with g(z) = z+

1X
n=2

bnz
n and h(z) 2 P ,

with h(z) = 1 +

1X
n=1

cnz
n.

Equating the coe�cients of zn in (3.3), we have

for n � 2,

nan = bn +

n�2X
k=1

bn�kc
k + cn�1 :

Thus for n � 2:

njanj � jbnj+

n�2X
k=1

jbn�kjjckj+ jcn�1j

� 3 + 2

n�2X
k=1

jbn�kj � 2n� 1 ;

i.e. janj � 2�
1

n
;

using Theorem 2.1 and Theorem 2.2. �

We now consider the Fekete-Szegö problem for the

class eK.
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Theorem 3.3. Let f(z) 2 eK and be given by

f(z) = z +

1X
n=2

anz
n. Then

��a3 � �a22
�� �

8>>>>>>><
>>>>>>>:

5

3
�

9

4
�; if � �

2

9
;

2

3
+

1

9�
; if

2

9
� � �

2

3
;

5

6
; if

2

3
� � � 1 :

For each �, there is a function in eK such that

equality holds.

Proof. In (1.1) Theorem 2.4 gives

h(z) =
zf 0(z)

g(z)
=

1 + !(z)

1� !(z)
;

so that ! is analytic, !(0) = 0 and j!(z)j � 1 for

z 2 E. Let !(z) be given by:

!(z) =

1X
n=1

�nz
n for z 2 E :

Then Theorem 2.2 gives

j�1j � 1 and j�2j � 1� j�1j
2 ;

see [5]. Now (3.3) gives

zf 0(z)� g(z) = fzf 0(z) + g(z)g!(z) :

Equating the coe�cients of z2 and z3 on both sides

we obtain:

2a2 = b2 + 2�1 ;

and

3a3 = b3 + 2�2 + 2�21 + 2�1b2 ;

so that

a3 � �a22 =
1

3

�
b3 �

3

4
�b22

�
+

+
2

3

�
�2 +

�
1�

3

2
�

�
�21

�
+

�
2

3
� �

�
�1b2 :(3.4)

We �rst consider the case
2

9
� � �

2

3
. Expression

(3.4) gives:

��a3 � �a22
�� �

1

3

����b3 � 3

4
�b22

����+
+
2

3

�����2 � 1

2
(3�� 2)�21

����
+
(2� 3�)

3

���1b2��
�

4� 3�

12
+

2

3
� � j�1j

2
+

(2� 3�)

3
j�1j = �(t)

say, with t = j�1j where we have used Theorem

2.1 and Theorem 2.2 and the fact that jb2j � 1 for

g(z) 2 C. Since the function �(t) attains its maxi-

mum at t0 =
2� 3�

6�
,

��a3 � �a22
�� � �(t0);

which proves the theorem if � �
2

3
. Choosing

�1 =
2� 3�

6�
, �2 = 1 � �21 and b1 = b2 = 1 in (3.4),

shows that the result is sharp. We note that since

j�1j � 1, we have � �
2

9
.

Next we suppose that � �
2

9
. Again, (3.4) gives:

��a3 � �a22
�� �

9

2
�

����a3 � 2

9
a22

����+
�
1�

9

2
�

�
ja3j

�
9

2
��

7

6
+

�
1�

9

2
�

�
5

3
=

5

3
�

9

4
� ;

where we have used the result already proved in case

� =
2

9
, and the fact that for f 2 eK, the inequality

ja3j �
5

3
holds (Theorem 3.2). Equality is attained

on choosing b2 = b3 = 1, �1 = 1 and �2 = 0 in (3.4).

Now, suppose that
2

3
� � � 1. We deal �rst with

the case � = 1. From (3.4), we have

a3 � a22 =
1

3

�
b3 �

3

4
b22

�
+

2

3

�
�2 �

1

2
�21

�
�

1

3
�1b2 ;

or

a3�a
2
2 =

1

3

�
b3 � b22

�
+

1

12
b22+

2

3

�
�2 �

1

2
�21

�
�
�1b2

3
;

and so��a3 � a22
�� � 1

3

��b3 � b22
��+ jb2j2

12
+
2

3

�����2 � 1

2
�21

����+ j�1b2j3
:

Using Theorem 2.1 and Theorem 2.2, and the fact

that j�2j � 1� j�1j
2, we obtain:

ja3 � a22j �
1

9

�
1� jb2j

2
�
+
jb2j

2

12
+

2

3
�
j�1j

2

3
+
ja1b2j

3

=
7

9
+
jb2j

2

18
�

1

3

�
j�1j �

jb2j

2

�2

�
7

9
+
jb2j

2

18

�
5

6
;

since jb2j � 1.

Next,

a3��a22 = (3��2)(a3�a22)+3(1��)

�
a3 �

2

3
a22

�
;

and the result follows at once on using the theorem

already proved in the case � = 1 and � = 2
3 .

Equality is attained in this case when b2 = b3 = 1,

�2 = 1� �21 with

�1 =
2� 3�

6�
� i

p
(6�� 4)

6�
:

�
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