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ALIENOR METHOD APPLIED IN STATISTICS: OPTIMIZATION OF KATZ’S
AND COM-POISSON’S LIKELIHOOD FUNCTIONS

Michel Koukouatikissa Diafouka1 and Chedly Gélin Louzayadio

ABSTRACT. In this paper, we are interested in a new approach to optimizing
the likelihood function of a distribution using the Alienor method. Indeed,
the Alienor method is an optimization technique that allows to reduce a mul-
tivariate optimization problem to a single variable optimization problem that
is easy to solve numerically. For this purpose, we consider the Katz and COM-
Poisson distributions, whose maximization of their likelihood functions requires
numerical methods. In a first step, we used real data, and, in a second step,
we performed a simulation study. The results obtained are satisfactory, and the
Alienor method proves to be very interesting in statistics, both for its simplicity
and for its performance in converging to the absolute optimum.

1. INTRODUCTION

One of the key steps in statistical inference is the estimation of the model
parameters, and one of the most popular parametric estimation methods is the
maximum likelihood method. Given an n− sample (y1, . . . , yn) independently
and identically distributed, the maximum likelihood method consists in maxi-
mizing the likelihood function of a parametric model given by:
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L(θ|y1, . . . , yn) =
n∏

i=1

p(yi|θ),

where θ is the vector of parameters belonging to the parameter space Θ and
p(y|θ) the parameterized probability distribution by θ. The maximum sought is
reached for θ̂ such that:

(1.1) θ̂ = argmax
θ∈Θ

L(θ|y1, . . . , yn).

Most often, the logarithm of the likelihood function is maximized, l(θ) =

logL(θ|y1, . . . , yn), because it is easier to use analytically. The problems of ex-
istence and uniqueness as well as the asymptotic behavior of estimators of the
maximum likelihood given by (1.1) have been widely and variously studied in
the literature [18]. For many models, the problem (1.1) cannot be solved an-
alytically, and therefore, numerical methods are used. Several numerical algo-
rithms have been proposed in the literature, in particular, the Newton-Raphson
algorithm and the EM algorithm, as well as their extensions [17,18].

The problem (1.1) is one of the global optimization problems in operations
research. As for (1.1), maximizing or minimizing an objective function leads, in
general, to a numerical solution. And generally, global optimization problems
cannot be solved efficiently by classical optimization techniques: this is due to
the fact that most classical methods only converge towards local minima [11].
Among the numerical methods of global optimization proposed in the literature
is the Alienor method. Developed in the 1980s by Cherruault and Guillez [3,11],
the Alienor method consists of reducing a multivariate objective function to a
univariate objective function using a reductive transformation with an optimiza-
tion preserving operator. In the literature, statistical work using this method
remains almost nonexistent. In this paper, we are interested in a new approach:
maximizing the likelihoods of the Katz [10] and Conway-Maxwell-Poisson [5]
distributions (in short, COM-Poisson or CMP) using the Alienor method. In-
deed, the Katz and COM-Poisson distributions are two-parameter distributions
that include, in particular, the Poisson distribution by taking into account the
situations of overdispersion and underdispersion. These two distributions have
been widely and variously studied in the literature and have been used as a basis
to develop several families of distributions [1, 7, 9, 14, 19]. The problem (1.1)
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corresponding to these distributions cannot be solved analytically and therefore
requires numerical methods.

The remainder of this paper is presented as follows. In Section 2, the Katz
and COM-Poisson distributions are presented. In Section 3, the Alienor method
is described in a concise way. In Section 4, we present the results obtained.
First, we make use of the real data, and second, we perform a simulation study
considering the situations of overdispersion and underdispersion and simulating
samples of different sizes for each situation and each distribution. The conclu-
sion and perspectives are presented in Section 5.

2. KATZ’S AND COM-POISSON’S DISTRIBUTIONS

In this section, we focus on the Katz and COM-Poisson distributions by pre-
senting their probability mass functions and the corresponding likelihood func-
tions.

2.1. Katz’s distribution. The Katz distribution [10] is defined from to the suc-
cessive probability ratios:

(2.1)
p(y + 1)

p(y)
=

λ+ βy

y + 1
, y = 0, 1, . . . ,

with p(0) ̸= 0 and p(y) = P (Y = y), where λ > 0 and β < 1, it is understood that
if λ + βy < 0 then p(y) = 0 for y = 1, 2, . . . [1]. The probability mass function
pmf corresponding to (2.1) is given by [1]:

(2.2) p(y) =


λy

y!
e−λ if β = 0,

(λ/β)yβ
y

y!
(1− β)λ/β otherwise,

y = 0, 1, . . . , where (α)y is the Pochhammer symbol and defined to be (α)y =

α(α + 1) . . . (α + y − 1) for y = 0, 1, . . . , and α any real number with (α)0 = 1.
This distribution is a good way to unif Poisson, binomial, and negative binomial
distributions when β = 0, β < 0 and β > 0, respectively [1].

Let put θ = (λ, β) and given an n−sample y = (y1, . . . , yn) and for β ̸= 0, the
log-likelihood function l(θ) of the variable Y Katz distributed is given by [14]:
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(2.3) l(θ) =
nλ

β
log(1− β) +

n∑
i=1

yi∑
k=1

log [λ+ β(k − 1)]− nlog(y!),

with the convention
0∑

k=1

= 0 and where log(y!) =
1

n

n∑
i=1

log(yi!).

2.2. COM-Poisson’s distribution. The pmf of the CMP distribution is given by
[5]:

(2.4) p(y) =
λy

y!ν
1

Z(λ, ν)
, y = 0, 1, . . . ,

where,

Z(λ, ν) =
∑
j≥0

λj

j!ν
, λ > 0, ν ≥ 0,

is the normalizing constant. This distribution is a good way to unif Poisson,
Bernoulli and geometric distributions when ν = 1, ν → ∞, and ν = 0 and
0 < λ < 1, respectively [7,19].

Let put θ = (λ, ν) and given an n−sample y = (y1, . . . , yn), the log-likelihood
function l(θ) of the variable Y CMP distributed is given by [19]:

(2.5) l(θ) = ny log λ− nνlog y!− n logZ(λ, ν),

where y =
1

n

n∑
i=1

yi.

3. ALIENOR METHOD

In this section, we present the Alienior method by describing the principle of
the method and giving the algorithm for using said method.

3.1. Principe. Consider the following optimization problem [12]:

(3.1) Glob min

(x1,...,xp)∈

p∏
k=1

[ak, bk]

f(x1, . . . , xp),
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where f is a continuous function. The Alienor methode consist to substitute the
variables xk, k = 1, p by the reducing transformation [11,12]:

(3.2) xk =
1

2
[(bk − ak)hk(x) + (bk + ak)] , x ∈ [−1, 1].

Thus, the multidimensional optimization problem (3.1) is reduced to the uni-
dimensional optimization problem (3.3):

(3.3) Glob min
x∈ [−1, 1]

f ∗(x),

where f ∗(x) = f(x1, . . . , xp) using (3.2).
Several reductive transformations have been proposed; we will be interested

in the following reductive transformations:

(i) Mora transformation [4]: h1(x) = x,

hk(x) = 1− cos
(
mk−1πx

)
, k = 2, p, m = 2 or 3;

(ii) Konfé-Cherruault transformation [11,12]:

hk(x) = cos(ωkx+ φk), k = 1, p,

with ωk = 100 + 0.0005× k and φk = 1 + 0.0000005(k − 1).

3.2. Algorithm. The problem given by (3.3) is easy to solve numerically, be-
cause it is an optimization problem of one dimension [2].

To improve the quality of the estimator, we combine the following operator,
called the new optimization-preserving operator, with the Alienor method. (in
short, OPO*) [11–13,16]:

T ε
f∗(x) =

f ∗(x)− f ∗(x0) + |f ∗(x)− f ∗(x0)|
2

+
1

ε
×H(f ∗(x)− f ∗(x0)),

with x0 an arbitrary point of [−1, 1], ε a small positive real and H is the Heavi-
side function. Solving the optimization problem of (3.3) amounts to solving the
equation T ε

f∗(x) = 0.
The steps of the algorithm are as follows [13]:
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(i) Step 0: Initialization
An initial point x0, and a constant ε are given. Then we have:

T ε
f∗(x0)

(x) =
f ∗(x)− f ∗(x0) + |f ∗(x)− f ∗(x0)|

2

+
1

ε
×H(f ∗(x)− f ∗(x0)).

(ii) Step 1: Step calculation
Solve T ε

f∗(xi)
(x) = 0.

Let Sxi
be a set defined by:

Sxi
=

{
x ∈ [−1, 1] : T ε

f∗(xi)
(x) = 0

}
.

If Sxi
= {x∗},

then x∗ is a global minimizer of f ∗,
end;
otherwise go to Step 2.

(iii) Step 2: Update T ε
f∗

For i = 1, 2, . . . , p, . . ., consider xi ∈ Sxi−1
=

{
x ∈ [−1, 1] : T ε

f∗(xi−1)
(x) =

0
}

and build:

T ε
f∗(xi)

(x) =
f ∗(x)− f ∗(xi) + |f ∗(x)− f ∗(xi)|

2

+
1

ε
×H(f ∗(x)− f ∗(xi)),

then go to Step 1.

Remark 3.1. Theorem 8 in [13] ensures that if Sxi
contains a unique element, it

is the solution of the global minimization problem (3.3).

4. RESULTS

We use the Alienor method in this section to maximize the likelihood func-
tions of the Katz’ and COM-Poisson’ distributions. For Katz’ distribution, we use
the two reduction transformations, while for the COM-Poisson distribution, we
use only the Mora transformation. For Katz’ distribution, we use the two reduc-
tion transformations while for the COM-Poisson distribution, we use only the
Mora transformation. The Alienor method algorithm was programmed under
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the Maplesoft language [12] and the results are compared with those of the ex-
tensions of the Newton-Raphson algorithm using the maxLik package for the r
statistical environment [8].

Moreover, the Alienor method as presented deals with minimization prob-
lems, and a maximization problem will be reduced to a minimization problem
by the relation:

max(f) = −min(−f).

4.1. Maximization of the likelihood of the Katz’s distribution.

4.1.1. Objetive function. For Mora transformation, we have:
x1 = λ =

1

2
[(b1 − a1)x+ (b1 + a1)],

x2 = β =
1

2
[(b2 − a2)(1− cos(mπx)) + (b2 + a2)], m = 2 or 3,

and applying this transformation in (2.3), we obtain the following objective
function:

f ∗(x) =
n[(b1 − a1)x+ b1 + a1]

(b2 − a2)(1− cos(mπx)) + b2 + a2

· log
(
1− 1

2
[(b2 − a2)(1− cos(mπx)) + (b2 + a2)]

)
+

n∑
i=1

yi∑
k=1

log [(b1 − a1)x+ b1 + a1 + (k − 1)[(b2 − a2)(1− cos(mπx))

+b2 + a2]]− n
[
1− δ0(y)

]
log 2− nlog(y!),

where δ0(y) =
1

n

n∑
i=1

δ0(yi).

For Konfé-Cherruault transformation, we have:
x1 = λ =

1

2
[(b1 − a1) cos(ω1x+ φ1) + (b1 + a1)],

x2 = β =
1

2
[(b2 − a2) cos(ω2x+ φ2) + (b2 + a2)],

and

f ∗(x) =
n[(b1 − a1) cos(ω1x+ φ1) + b1 + a1]

(b2 − a2) cos(ω2x+ φ2) + b2 + a2
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× log

(
1− 1

2
[(b2 − a2) cos(ω2x+ φ2) + (b2 + a2)]

)
+

n∑
i=1

yi∑
k=1

log [(b1 − a1) cos(ω1x+ φ1) + b1 + a1

+(k − 1)[(b2 − a2) cos(ω2x+ φ2) + b2 + a2]]

− n
[
1− δ0(y)

]
log 2− nlog(y!).

4.1.2. Empirical results.
Empirical data set 1. Table 1 contains the data set and these data show the dis-
tribution of the number of accidents among machine operators in a fixed time
period [6]. Table 2 presents the obtain results. We observe that the likelihood is
better optimized by the Alienor method with the Konfé-Cherruault transforma-
tion.

TABLE 1. Number accidents for machine operators [6]

Observation 0 1 2 3 4 5 Total
No. of accidents 447 132 42 21 3 2 647

TABLE 2. Results of the number accidents for machine operators

MLE AM
MT KCT

λ 0.4652241 0.4657328 0.3396944
β 0.5377934 0.5377705 1.4×10−9

l(θ) -592.2670976 -592.2672266 -453.8482754
MLE: maximum likelihood estimation
AM: Alienor method
MT: Mora transformation
KCT: Konfé-Cherruault transformation

Empirical data set 2. Table 3 contains the data set and these data show the dis-
tribution of the Number of weevil eggs laid per bean [15]. Table 4 presents the
obtain results. As for the first data set, we observe that the likelihood is better
optimized by the Alienor method with the Konfé-Cherruault transformation.
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TABLE 3. Number of weevil eggs laid per bean [15]

Observation 0 1 2 3 4+ Total
No. of weevil eggs 159 64 13 4 0 240

TABLE 4. Results of the number of weevil eggs laid per bean

MLE AM
MT KCT

λ 0.42500 0.49469 0.33969
β 0.06737 0.25882 1.4×10−9

l(θ) 205.2142 -207.0134453 -176.1779512

4.1.3. Simulation results. We simulated samples of size n = 50, 150, 500, 1000,

10000, following the Katz distribution. Two scenarios were investigated based
on the values of the dispersion parameter beta, −0.05, and 0.5, which correspond
to the underdispersion and overdispersion for lambda = 1.5, respectively. The
results are presented in Tables 5 and 6, respectively for β = −0.05 and β = 0.5.
We observe that the likelihood is better optimized by the Alienor method with
the Konfé-Cherruault reductive transformation in the case of underdispersion
and slightly better optimized by the habituated approach over the Mora trans-
formation in the case of overdispersion.

Table 5: Simulation for λ = 1.5 and β = −0.05

Run n Optimum MLE
AM

MT KCT

Run 1 50
λ 1.6234 1.62517 1.6186
β -0.2684 -0.26887 -0.2679
l(θ) -69.44254 -69.44255 -69.44281

Run 2 150
λ 1.61861 1.61353 1.3731
β -0.06484 -0.05813 -4.43×10−8

l(θ) -228.3376 -228.3405 -228.2348

Run 3 500
λ 1.42144 1.43612 1.3731
β -0.02850 -0.03800 -4.43×10−8

l(θ) -742.3415 -742.3527 -737.8035
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Run 4 1000
λ 1.63023 1.46599 1.3731
β -0.13369 -0.02895 -4.43×10−8

l(θ) -1477.304 -1479.6198 -1473.2371

Run 5 10000
λ 1.52042 1.47323 1.3731
β -0.05817 -0.02747 -4.43×10−8

l(θ) -14973.57 -14975.7983 -14903.0797

TABLE 6. Simulation for λ = 1.5 and β = 0.5

Run n Optimum MLE AM
MT KCT

Run 1 50
λ 1.4344 1.438836 1.4362
β 0.3709 0.37018 0.3707
l(θ) -96.18827 -96.18845 -96.18831

Run 2 150
λ 1.56678 1.57642 1.5176
β 0.51631 0.51464 0.5238
l(θ) -333.667 -333.668 -333.715

Run 3 500
λ 1.32801 1.42616 1.3148
β 0.54894 0.51991 0.5460
l(θ) -1086.039 -1086.536 -1086.128

Run 4 1000
λ 1.51956 1.59452 1.5318
β 0.49542 0.47473 0.4889
l(θ) -2160.233 -2160.702 -2160.272

Run 5 10000
λ 1.479603 1.47639 1.5178
β 0.501480 0.50320 0.4870
l(θ) -21530.34 -21530.367 -21532.002

4.2. Maximization of the likelihood of the COM-Poisson’s distribution.

4.2.1. Objective function. Consider the Mora transformation:
x1 = λ =

1

2
[(b1 − a1)x+ (b1 + a1)],

x2 = ν =
1

2
[(b2 − a2)(1− cos(mπx)) + (b2 + a2)], m = 2 or 3,



ALIENOR METHOD APPLIED IN STATISTICS 11

and applying this transformation in (2.5), we obtain the following objective
function:

f ∗(x) =ny log[(b1 − a1)x+ b1 + a1]−
n

2
[(b2 − a2)(1− cos(mπx)) + b2 + a2]log y!

− ny log 2− n logZ(x),

where

Z(x) =
∑
j≥0

2−j[(b1 − a1)x+ (b1 + a1)]
j

j!2−1[(b2−a2)(1−cos(mπx))+(b2+a2)]
.

4.2.2. Empirical results.
Empirical data set 1. Table 7 contains the data set and the data consist of the
number of death notices of women 80 years of age and older, appearing in the
London Times on each day for three consecutive year [7]. Table 8 presents the
obtain results. For this data set, we observe that the likelihood is slightly better
optimized by the maximum likelihood method.

TABLE 7. Death notice data of London times [7]

Observation 0 1 2 3 4 5 6 7 8 9 Total
No. of death notices 162 267 271 185 111 61 27 8 3 1 1096

TABLE 8. Results of the death notice data of London times

MLE MT
λ 1.66024 1.66506
ν 0.74983 0.74956
l(θ) -1990.143 -1990.15809

Empirical data set 2. Table 9 contains the data set on chromosome interchanges
induced by x-ray irradiation [9]. Table 10 presents the obtain results. We ob-
serve that the Alienor method slightly optimizes the likelihood for these data.

TABLE 9. Numbers of cells with k interchanges [9]

Observation 0 1 2 3+ Total
No. of cells 2278 273 15 0 2566
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TABLE 10. Results of the numbers of cells with k interchanges

MLE MT
λ 0.120279 0.120281
ν 1.248943 1.249104
l(θ) -960.49907 -960.4906

4.2.3. Simulation results. As for the Katz distribution, we simulated samples of
size n = 50, 150, 500, 1000, 10000, following the COM-Poisson distribution. Two
scenarios were also investigated based on the values of the dispersion parame-
ter ν, 0.4 and 2, which correspond to the overdispersion and underdispersion,
respectively, for the same value of λ = 1.5. Tables 11 and 12 show the results for
ν = 0.4 and ν = 2, respectively. We see that the likelihood is better optimized
with the Alienor method in the case of overdispersion and better optimized by
the habituated approach in the case of underdispersion.

TABLE 11. Simulation for λ = 1.5 and ν = 0.4

Run n Optimum MLE MT

Run 1 50
λ 1.4503 1.2438
ν 0.3525 0.76480
l(θ) -117.9516 -109.7439

Run 2 150
λ 1.40633 1.3129
ν 0.33412 0.86040
l(θ) -354.7301 -349.9674

Run 3 500
λ 1.62349 0.92710
ν 0.45479 0.59697
l(θ) -1125.764 -1132.295

Run 4 1000
λ 1.73126 1.63091
ν 0.48590 0.44772
l(θ) -2258.869 -2260.242

Run 5 10000
λ 1.529907 1.513856
ν 0.413752 0.4072065
l(θ) -22721.08 -22721.83
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TABLE 12. Simulation for λ = 1.5 and ν = 2

Run n Optimum MLE MT

Run 1 50
λ 1.4284 1.50011
ν 2.0793 2.00000
l(θ) -55.72776 -56.24239

Run 2 150
λ 1.5704 1.50017
ν 2.2617 2.00000
l(θ) -164.8709 -164.7383

Run 3 500
λ 1.6381 1.50026
ν 2.1231 2.00006
l(θ) -570.6072 -571.4307

Run 4 1000
λ 1.5391 1.51342
ν 2.1690 2.02839
l(θ) -1114.468 -1115.942

Run 5 10000
λ 1.49753 1.50578
ν 2.00035 2.00538
l(θ) -11465.23 -11465.68

Remark 4.1. It is assigned that we did not obtain satisfactory results with the
Konfé-Cherruault transformation for the COM-Poisson distribution. This can be
explained by the fact that the COM-Poisson distribution admits a non-explicit nor-
malization constant, unlike the Katz distribution. Hence the reason to present only
the results of the Mora transformation for the COM-Poisson distribution.

5. CONCLUSION AND PERSPECTIVES

The Alienor method is an interesting optimization technique that allows for
reaching the global optimum even for the most complex systems with a high
number of variables. Due to its simplicity, its application in statistics also makes
it competitive in comparison with the complex algorithms existing in the field.
The obtained results let us predict, in a more or less optimistic way, that the use
of the Alienor method in statistics will be met with great interest and success.

Like any method, the Alienor method has some drawbacks. The inadequacy
of the choice of the bounds that delimit the domain of the parameters makes the
value of the likelihood function explode at the optimum. This is not negligible
in statistics. This opens perspectives for improving the said method to avoid
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the explosion of this function. The coupling with another estimation method,
such as the method of moments, could better guide the choice of the bounds,
especially since the estimators of moments are sometimes used as initial values
for the maximum likelihood estimators. Also, we plan to program the Alienor
method under the statistical environment r in order to make it more accessible
both to those interested in statistics as a decision support tool and to researchers.
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