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PERFORMANCE STUDY OF MULTIOBJECTIVE OPTIMIZER METHOD
BASED ON GREY WOLF ATTACK TECHNICS

Wendinda Bamogo, Kounhinir Some1, and Guy Aymard Degla

ABSTRACT. This paper proposes a performance study for the Multiobjective Op-
timizer based on the Grey Wolf Attack technics (MOGWAT). It is a method of
solving multiobjective optimization problems. The method consists of the reso-
lution of an unconstrained single objective optimization problem, which is de-
rived from the aggregation of objective functions by the ϵ-constraint approach
and the penalization of constraints by a Lagrangian function. Then, Pareto-
optimal solutions are obtained using the stochastic method based on the Grey
Wolf Optimizer. To evaluate the method, three theorems have been formulated
to demonstrate the convergence of the proposed algorithm and the optimality
of the obtained solutions. Six test problems from the literature have been suc-
cessfully dealt with, and the obtained results have been compared to two other
methods. We have evaluated two performance parameters, including the gen-
erational distance for the approximation error and the spread for the coverage
of the Pareto front. Based on these numerical findings, it can be concluded that
MOGWAT outperforms two other methods.

1. INTRODUCTION

For the solution of many real-world problems, a multiobjective optimization
model is used. That is a mathematical programming formula where multiple ob-
jective functions are considered at the same time to minimize or/and maximize.
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In many cases, these objective functions are submitted to constraints. These
models do not have a unique solution, but many solutions. In this area, these
kinds of solutions are called Pareto optimal solutions. We have two types of
methods for solving these problems: exact methods [22,23,25] and metaheuris-
tic methods [1, 6, 8, 12]. Exact methods have difficulties in solving problems in
which we have many data, such as variables or objective functions or constraint
functions. Metaheuristic methods are the most common, but they usually lead
to finding a good approximation of the Pareto optimal solutions set. The good-
ness of solutions is evaluated on three measures: convergence of the obtained
solutions to the true Pareto front, distribution of obtained solutions on the true
Pareto front, and computational time of obtained solutions. It is almost impos-
sible to find a method that fulfills all these evaluation measures. In practice, it
is difficult to find one of the existing methods from the literature that can be
applied to all kinds of multiobjective optimization problems.

Metaheuristic methods, in general, are methods that are inspired by the nat-
ural phenomena of life [1, 2, 4] for the resolution of complex problems. Initial,
they were designed for a single objective problem, and thereafter they were
adapted for multiple objective optimization problems resolution. Among these
kinds of methods, we cite genetic algorithm (GA) [11] and grey wolf optimizer
(GWO) [10]. Numerous studies have proposed approaches that combine these
two algorithms, and HmGWOGA [9] is one of them. This has been built to op-
timize single-positive objective functions without constraints. MOGWAT [8] is
its extension to resolve multiple objectives cases. It works by transforming the
optimization of multiple objective functions with constraints into the optimiza-
tion of a single objective function without constraints by using the ϵ-constraint
approach [1] and the Lagrangian penalty function [23]. It is a method from the
literature, but no theoretical convergence study has been conducted to prove
the convergence of its algorithm.

Therefore, in this paper, we propose a performance study that considers both
the numerical and theoretical performance. This work establishes the conver-
gence of the MOGWAT method through studies of the consistency and stability of
its algorithm. Then, this work illustrates the numerical capabilities of the MOG-
WAT method by comparing it to two other methods, namely MSSA [13] and
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MOGOA [12]. This comparison is done on six test problems from the literature
and is focused on convergence of obtained solutions toward the true Pareto front
and the distribution of obtained solutions on the Pareto front. Based on these
results, we have concluded that the MOGWAT method is efficient and effective
at finding Pareto optimal solutions to multiobjective optimization problems.

In order to facilitate the comprehension of this document, we shall arrange
it in the following manner. Section 2 will present the preliminary. Section 3
will be dedicated to highlighting the main results of this work; Section 5 will be
dedicated to conclusion.

2. PRELIMINARY

2.1. Multiobjective optimization concepts.
Let f = (f1, f2, . . . , fp) and g = (g1, g2, . . . , gm) be numerical vector functions

with p and m some finite integer numbers. Multiobjective optimization prob-
lems, especially the cases of minimization, are formulated mathematically by:

(MOP)


min (f1(x), f2(x), . . . , fp(x)) , p ≥ 2

gj(x) ≤ 0, j ∈ 1 : m

x ∈ Rn

where fi : R
n → R, i = 1, 2, . . . , p, is an objective function and gj : R

n → R, j =

1, 2, . . . ,m is a constraint function. In the follow, we will put χ =
{
x ∈ Rn : gi ≤

0
}

and Y = f(χ) respectively the decision space and the objective space.

Definition 2.1. A point x∗∈ χ is called Pareto optimal solution of problem (MOP)
if there is no other point x ∈ χ such that f(x) ≤ f(x∗) and f(x) ̸= f(x∗).

In this case, f(x∗) =
(
f1(x

∗), f2(x
∗), . . . , fp(x

∗)
)

is said a non-dominated point.
That allows us to set Ps =

{
x∗ ∈ χ : f(x∗) is non-dominated

}
as a Pareto optimal

solutions set and Pf =
{
(x, f(x)) : x ∈ Ps

}
Pareto front.

Definition 2.2. A point x∗ ∈ χ is called weakly Pareto optimal solution of problem
(MOP) if there is no x ∈ χ for which f(x) < f(x∗).

By noting weakly Pareto optimal solutions Ps, we have Ps ⊆ Ps.
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To obtain these kinds of solutions, many methods try to transform multi-
ple objective functions into a single objective function by using some aggre-
gation function. The well-known and well-used are weighted sum, weighted
Tchebychev distance, augmented weighted Tchebychev distance, ϵ-constraint
approach [3,24]. In the MOGWAT method, it is the ϵ-constraint approach which
was chosen to build the algorithm. This aggregation function has many advan-
tages, such as using a few parameters to fix in advance, and preserving Pareto
optimal solutions during the conversion from multiple objective functions to
single objective function when we have any kind of problems.

The methods, which deal directly with the optimization of a single objec-
tive function under constraints, sometimes have difficulties obtaining optimal
solutions. Therefore, in many methods, a step consisting of transforming the
problem into an unconstrained is made before. In this framework, we will use
the Lagrangian penalty function [22, 23, 25] to transform the problem into an
unconstrained a single-objective optimization problem. This last form of the
problem requires the use of a single-objective optimizer in order to get the opti-
mal solution. At this step, the Grey wolf optimizer will be used.

2.2. Grey Wolf Optimizer.
The Grey Wolf Optimizer, as noted by GWO, is an algorithm inspired by the

leadership and hunting process of grey wolves. They are predators that live in
groups [18], in which we can identify four subgroups: the grey wolf α, the grey
wolf β, the grey wolf δ, and grey wolves ω. This organization of the grey wolf
hunt is represented by a triangle, as shown in the Figure 2.2 below.

FIGURE 1. Hierarchy of grey wolf [10]

In practice, the hunting is done in group and is led by the grey wolves α,
β, and δ, but each grey wolf is considered as a search agent. The first three
subgroups are the best search agents in the group. The other grey wolves, ω,



PERFORMANCE STUDY OF MOGWAT METHOD 57

orientate their search position according to the positions of three subgroups
of leaders. According to Muro et al. [18], the main steps of hunting are the
following:

⋄ track, pursue and approach the prey;
⋄ encircle and harass the prey until it stops moving;
⋄ Attack the prey.

These different steps can be given in the following Figure 2.2. That is presented
in the works of C. Muro et al. [18].

FIGURE 2. Grey wolves Hunting steps

Figure 2.2 is subdivided in five parts: part A is chasing, approaching, and
tracking; part B, C, and D are pursuiting, harassing, and encircling; and part E
is stationary situation and attacking.

The following equations are used to present mathematical models of social
hierarchy, pursuit, encirclement, and prey attack [10,18].

(2.1)

D⃗(t) = |C⃗.X⃗p(t)− X⃗(t)|

X⃗(t+ 1) = X⃗p(t)− A⃗.D⃗(t)
,

where t is the current iteration number, A⃗ = 2a⃗r⃗1− a⃗, C⃗ = 2r⃗2 are some random

vectors; the vector a⃗ = 2
(
1 − td

T d

)
linearly decreasing from 2 to O during the

iterations; r⃗1, r⃗2 are random vectors taken in [0, 1]; X⃗p is the position vector of
the prey; X⃗ is the vector given the position of a grey wolf; and T correspond to
the maximal number of the iterations.
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During the attack, the position of each grey wolf in the group is changed
based on the position of the leaders α, β and δ. Following are the equations
that provide the novel positions of these leaders.

(2.2)


Di

α(t) = |CαGα(t)−Xi(t)|, V i
α(t) = Gα(t)− AαD

i
α(t)

Di
β(t) = |CβGβ(t)−Xi(t)|, V i

β(t) = Gβ(t)− AβD
i
β(t)

Di
δ(t) = |CδGδ(t)−Xi(t)|, V i

δ (t) = Gδ(t)− AδD
i
δ(t)

Xi(t+ 1) = λαV
i
α(t) + λβV

i
β(t) + λδV

i
δ (t), i = 1, . . . , N

,

where N is the number of search agents and λα, λβ, λδ are the weights such as
λα + λβ + λδ = 1.

3. MAIN RESULTS

Let us recall the formulation of multiobjective optimization problem:

(MOP)


min (f1(x), f2(x), . . . , fp(x)) , p ≥ 2

gj(x) ≤ 0, j ∈ 1 : m

x ∈ Rn

,

where p,m, n ∈ N.

3.1. MOGWAT method description.
MOGWAT is an iterative and stochastic method that uses an initial population

of solutions to provide the best ones for a given multiobjective optimization
problem. We can identify two main steps: conversion of the initial problem to
an unconstrained single-objective problem and minimize of a function.

To get an unconstrained single-objective function, that requires the using of
an aggregation function followed by the using of the penalty function. In the
MOGWAT method, the aggregation is realized with the use of ϵ-constraint ap-
proach [8] and the penalization through a Lagrangian function.

The aggregation operation allows to reword the problem MOP as follows:
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(P’)


min fk(x)

gj(x) ≤ 0, j ∈ 1 : m

fi(x) ≤ εi, i ∈ 1 : p, i ̸= k

x ∈ Rn

,

where ϵi, i = 1, p, i ̸= k are the parameters that must be determined before
the looking for of the optimal solutions. Here, the objective function fk(x) is
chosen randomly, but it is considered to be the prior objective function. For the
following, let us set that hl = gl, l = 1,m, hm+i = fi − ϵi, i = 1, p, i ̸= k.

The Lagrangian penalty function [8] is used at this step to transform the prob-
lem P’ to an unconstrained problem. Thus, our initial problem becomes to min-
imize the following function:

(Fp) L(x, ϵ, η) = fk(x) + η

q∑
l=1

(
hl(x) + |hl(x)|

)
,

where q = m+p−1 and η is a large constant chosen such as η ≥ M −max fk(x)
m∑
l=1

hl(x)

.

MOGWAT algorithm is presented in Section 4.

3.2. Convergence of MOGWAT.
As the MOGWAT method presents a numerical algorithm, we have demon-

strated its convergence in two steps: consistency results and stability results.

3.2.1. Consistency.

Definition 3.1. The consistency of the numeric method is a property that ensures
that the approached solutions converge to an exact solution for the initial problem
when the discretization step is zero [14,21].

The following theorem is based on this definition.

Theorem 3.1. Let us fix ϵ ∈
p∏

i=1

[min fi(x),max fi(x)]. MOGWAT method is consis-

tency if and only if all optimal solution of problem (Fp) is a Pareto optimal solution
of problem (MOP).
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Proof. Let x∗ be an optimal solution of the problem (Fp) for a fixed point ϵ ∈
p∏

i=1

[min fi(x),max fi(x)]. Let us assume that x∗ is not a Pareto optimal solution

of problem (MOP). x∗ being an optimal solution of the problem (Fp) means that
for all other points x ∈ χ, we have

(3.1) L(x∗, ϵ, η) ≤ L(x, ϵ, η).

That is equivalent to

fk(x
∗) + η

m∑
j=1

p∑
i=1,i ̸=k

(
gj(x

∗) + fi(x
∗)− εi + |gj(x∗) + fi(x

∗)− εi|
)

≤ fk(x) + η

m∑
j=1

p∑
i=1,i ̸=k

(
gj(x) + fi(x)− εi + |gj(x) + fi(x)− εi|

)
.

Since x∗ and x are admissible points, we have:gj(x
∗) ≤ 0 and gj(x) ≤ 0, ∀j = 1, . . . ,m

fi(x
∗)− εi ≤ 0 and fi(x)− εi ≤ 0, ∀i = 1, . . . , p, i ̸= k

By making the sum member per member of the two equations, we have: gj(x∗)+

fi(x
∗)− εi ≤ 0 and gj(x) + fi(x)− εi ≤ 0. That allows to obtain gj(x

∗) + fi(x
∗)−

εi + |gj(x∗) + fi(x
∗)− εi| = 0 and gj(x) + fi(x)− εi + |gj(x) + fi(x)− εi| = 0.

That is also equivalent to

m∑
j=1

p∑
i=1,i ̸=k

(
gj(x

∗) + fi(x
∗)− εi + |gj(x∗) + fi(x

∗)− εi|
)
= 0

m∑
j=1

p∑
i=1,i ̸=k

(
gj(x) + fi(x)− εi + |gj(x) + fi(x)− εi|

)
= 0

Hence:

(3.2) fk(x
∗) < fk(x).

If x∗ is not a Pareto optimal solution of problem (MOP) for a fixed ϵ then, there
exists an optimal solution x such as: fi(x) ≤ fi(x

∗), ∀i = 1 : p, i ̸= k and
∃j ∈ {1, 2, . . . , p} such as fj(x) < fj(x

∗). Two cases are possible:

1st case : if j = k then, fk(x) < fk(x
∗) and fi(x) ≤ fi(x

∗) ≤ εi,∀i ̸= k,
which contradicts the equation (3.2).
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2nd case : if j ̸= k then, fj(x) < fj(x
∗) ≤ εj and fi(x) ≤ fi(x

∗) ≤
εi, and fk(x) < fk(x

∗)∀i ̸= j, i ̸= k, which also contradicts the equa-
tion (3.2)

Therefore, x∗ is a Pareto optimal solution of problem (MOP). □

3.2.2. Stability.
The stability of a numerical algorithm is a global property. It is a necessary

quality in order to hope to obtain meaningful results. Stability is defined dif-
ferently depending on the context. It refers to the spread of errors during the
calculation of steps. It is the ability of the algorithm to avoid amplifying any
deviations too much, to ensure the accuracy of the results obtained.

Iterative algorithms are stable if the perturbations of the numerical solutions
do not increase with the number of iterations [21].

Definition 3.2. [15, 19, 20] Let E be the mathematical expectation and V the
variance of a random variable. Let us consider ALG, a numerical algorithm that
has been defined by

(ALG)

X(0) given,

Xi(t+ 1) = f(Xi(t))
.

Then

⋄ ALG is 1-order stable if for all agent of search i, lim
t−>+∞

E
(
Xi(t)

)
< +∞.

⋄ ALG is 2-order stable if for all agent of search i, lim
t−>+∞

V
(
Xi(t)

)
= 0.

From the line 27 to 31 of the Algorithm ??, we have formulated the numerical
algorithm of MOGWAT as follows:
X(0) given,

Xi(t+ 1) =
∑

l=α,β,δ

λlglj(t) +
∑

l=α,β,δ

λlAlj

∣∣Cljglj(t)− xij(t)
∣∣, j = 1, . . . , d; i = 1, . . . , N.

Theorem 3.2. MOGWAT Algorithm is 2-order stable.

In the field of metaheuristic algorithm analysis, the stagnation hypothesis is
a common one [19, 20]. In addition to this hypothesis of stagnation, let us
consider the positions of the best research agents as constants.
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Proof. Let us consider Xi(t) positions of search agents as random variables. The
position of Xi(t + 1), ith agent of search at the iteration t + 1 is in relation
with Xi(t) of iteration tth, and the positions of Gl such as l = α, β, δ three best
research agents and also the random parameters Alj and Clj.

We have Alj ∼ U
(
[−a(t), a(t)]

)
and Clj ∼ U

(
[0, 2]

)
. Then, the density func-

tion fAlj
of Alj is given by fAlj

(x) =
1

2a(t)
and that of Clj is given by fClj

(x) =
1

2
.

By using the transfer theorem, we have obtained:

E(Ar
lj) =

∫ a(t)

−a(t)

xr

2a(t)
dx =

(a(t))r+1 − (−a(t))r+1

2(r + 1)a(t)
=


a(t)r

r + 1
, r pair

0, if else
.

With the same reasoning, we have gotten:

(3.3) E
(
Cr

lj

)
=

2r

r + 1
.

Elsewhere, we have:

∀t, E(xij(t)) = E
( ∑

l=α,β,δ

λlglj(t) +
∑

l=α,β,δ

λlAlj|Cljglj(t)− xij(t)|
)
,

j = 1, . . . , d; i = 1, . . . , N .
As the mathematical expectation being linear and the variables Alj and |Cljglj−

xij| being independent, on have:

E(xij(t)) = E
( ∑

l=α,β,δ

λlglj(t)
)
+ E

( ∑
l=α,β,δ

λlAlj|Cljglj(t)− xij(t)|
)

= E
( ∑

l=α,β,δ

λlglj(t)
)

because E
(
Alj

)
= 0

=
∑

l=α,β,δ

λlGl(t) < +∞.

On the one hand, the 2-order of moment can be calculated as follows:

V
(
xij(t+ 1)

)
= E

(
xij(t+ 1)− E

(
xij(t+ 1)

))2
= E

(
xij(t+ 1)−

∑
l=α,β,δ

λlGl(t)
)2
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= E
( ∑

l=α,β,δ

λlAlj|Cljglj(t)− xij(t)|
)2

= E
(
λαAαj|Cαjgαj(t)− xij(t)|+ λβAβj|Cβjgβj(t)− xij(t)|

+ λδAδj|Cδjgδj(t)− xij(t)|
)2
.

By posing 
a = λαAαj|Cαjgαj − xij(t)|
b = λβAβj|Cβjgβj − xij(t)|
c = λδAδj|Cδjgδj − xij(t)|

Then, we have: (a+ b+ c)2 = a2 + b2 + c2 + 2(ab+ ac+ bc).

As E
(
a+b+c

)2
= E(a2)+E(b2)+E(c2)+2(E(ab)+E(ac)+E(bc)) by replacing

each element with its expression and taking into account that E
(
Alj

)
= 0, l =

α, β, δ, we have obtained:

V(xij(t+ 1))

= E
(
(λαAαj|Cαjgαj − xij(t)|)2 + (λβAβj|Cβjgβj − xij(t)|)2

+ (λδAδj|Cδjgδj − xij(t)|)2
)

= E
(
(λαAαj

)2(
Cαjgαj − xij(t)

)2
+
(
λβAβj

)2(
Cβjgβj − xij(t)

)2
+ (λδAδj

)2
×
(
Cδjgδj − xij(t)

)2)
= E

(
λαAαj

)2
E
(
Cαjgαj − xij(t)

)2
+ E

(
λβAβj

)2
E
(
Cβjgβj − xij(t)

)2
+ E

(
λδAδj

)2
E
(
Cδjgδj − xij(t)

)2
= λ2

α

a2(t)

3
E
(
Cαjgαj − xij(t)

)2
+ λ2

β

a2(t)

3
E
(
Cβjgβj − xij(t)

)2
+ λ2

δ

a2(t)

3
E
(
Cδjgδj − xij(t)

)2
= λ2

α

a2(t)

3
E
(
C2

αjg
2
αj − 2xij(t)Cαjgαj + x2

ij(t)
)
+ λ2

β

a2(t)

3
E
(
C2

βjg
2
βj

− 2xij(t)Cβjgβj + x2
ij(t)

)
+ λ2

δ

a2(t)

3
E
(
C2

δjg
2
δj − 2xij(t)Cδjgδj + x2

ij(t)
)
.
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Therefore, by using the expressions of E
(
Ar

lj

)
, E
(
Cr

lj

)
and E(xij(t)), we have

obtained:

V(xij(t+ 1)) =
a2(t)

3

(4
3

∑
l=α,β,δ

λ2
lG

2
l − 2

∑
l=α,β,δ

λ2
lGl(

∑
l=α,β,δ

λlGl(t))

+
∑

l=α,β,δ

λ2
lE(x2

ij(t))
)
.

(3.4)

One the other hand, the 2-order of moment can be calculated as follows:

V(xij(t)) = E
(
xij(t)−

∑
l=α,β,δ

λlGl

)2
= E(x2

ij(t))− 2(
∑

l=α,β,δ

λlGl)E(xij(t)) + (
∑

l=α,β,δ

λlGl)
2

= E(x2
ij(t))− 2(

∑
l=α,β,δ

λlGl)(
∑

l=α,β,δ

λlGl) + (
∑

l=α,β,δ

λlGl)
2

= E(x2
ij(t))− (

∑
l=α,β,δ

λlGl)
2.

From the last equation, we have E(x2
ij(t)) = V(xij(t)) + (

∑
l=α,β,δ

λlGl)
2. By using

this in 3.4, we have:

V(xij(t+ 1)) =
a2(t)

3

( ∑
l=α,β,δ

λ2
lV(xij(t)) +

∑
l=α,β,δ

λ2
l (
∑

l=α,β,δ

λlGl)
2 +

4

3

∑
l=α,β,δ

λ2
lG

2
l

− 2(
∑

l=α,β,δ

λ2
lGl))(

∑
l=α,β,δ

λlGl))
)
.

By setting 

Vt+1 = V
(
xij(t+ 1)

)
Vt = V

(
xij(t)

)
bt =

a2(t)

3
γ =

∑
l=α,β,δ

λ2
l

p0 =
∑

l=α,β,δ

λ2
l

( ∑
l=α,β,δ

λ2
l (
∑

l=α,β,δ

λlGl)
2 +

4

3

∑
l=α,β,δ

λ2
lG

2
l

−2(
∑

l=α,β,δ

λ2
lGl)(

∑
l=α,β,δ

λlGl)
)
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we have p0 ≥ 0. That allows to reword equation 3.4 as follows:

(3.5) Vt+1 = bt

(
γVt + p0

)
.

Equation 3.5 can be considered as a first order dynamic system and can be solving as
follows:

V
(
xij(t)

)
=

1

γ

(
V(xij(1))

t−1∏
τ=1

bτ + p0bt−1

(
1 +

t−2∑
τ=1

t−2∏
ζ=τ

bτ

))
, t > 1

=
1

γ

(
V(xij(1))

T−1∏
t=1

bt + p0bT−1

(
1 +

T−2∑
t=1

T−2∏
ζ=t

bτ

))

<
1

γ

(
V(xij(1))bT−1 + p0bT−1

(
1 +

T−2∑
t=1

1
))

<
4

3γT 2

(
V(xij(1)) + p0(T − 1)

)
.

As V
(
xij(1)

)
< +∞, then

lim
T−>+∞

V(xij(T )) ≤ lim
T−>+∞

4

3γT 2

(
V(xij(1)) + p0(T − 1)

)
= 0

and lim
t−>+∞

V
(
xij(t)

)
= 0. □

3.3. Numerical results.
To evaluate the numerical performance of our metaheuristic method a com-

parative has been done with two other metaheuristic methods taking into the
literature [12, 13]. This comparison has been made on the convergence and
distribution of the obtained Pareto optimal solutions by method. Therefore, in
this section, we have, at first, presented the performance parameters. Then,
we have given the using test problems in the table 1. After that, we have pro-
vided two tables for giving the performance parameters, and finally, we do some
comments.

3.3.1. Performance parameters.

Distance générationnelle γ: For a numerical method, it is important to
find solutions that are closest to the true Pareto front. The parameter γ
values allows us to assess this property. It evaluates the errors caused by
taking the obtained solutions as the analytic solutions. In other words,
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the level of convergence of the method is measured by γ. More it is
next to zero, the method is good [16]. The following formula is used to
calculate this parameter.

(3.6) γ =
1

n

(
n∑

i=1

dpi

) 1
p

.

In this paper, we have fixed p = 2. Notice that di is the distance between
the ith solutions of the obtained solutions and the analytic solutions. n

is the number of obtained solutions.
Spread ∆ : For a numerical method, it is important to find solutions that

cover the Pareto front uniformly. The parameter Spread ∆ allows eval-
uating of this property. It provides a measure of the distribution of the
obtained solutions. When its values are close to zero, the distribution of
the method is good [17]. This parameter is computed by the following
formula:

∆ =

M∑
m=1

dem +
|Q|∑
i=1

|di − d|

M∑
m=1

dem + |Q|d

with di the Euclidean distances between two related solutions with the
average value d; And dem is the distance between extreme solutions.

3.3.2. Test problems.
Six test problems have been chosen that are well-known and used in the lit-

erature [2, 4, 8]. These problems have already been dealt with by the methods
MSSA [13] and the MOGOA [12].

Table 1: Test problems



FON

min f1(x) = 1− exp(−
n∑

i=1

(
xi −

1√
n
)2
)

min f2(x) = 1− exp(−
n∑

i=1

(
xi +

1√
n
)2
)

4 ≤ xi ≤ 4, n = 10



ZDT1

min f1(x) = x1

min f2(x) = g(x)×
(
1−

√
f1(x)

g(x)

)
g(x) = 1 +

9

n− 1
×

n∑
i=2

xi

0 ≤ xi ≤ 1, i = 1 : 30
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

ZDT1-linear

min f1(x) = x1

min f2(x) = g(x)×
(
1− f1(x)

g(x)

)
g(x) = 1 +

9

n− 1
×

n∑
i=2

xi

0 ≤ xi ≤ 1, i = 1 : 30



ZDT2

min f1(x) = x1

min f2(x) = g(x)×
(
1−

(
f1(x)

g(x)

)2)
g(x) = 1 +

9

n− 1
×

n∑
i=2

xi

0 ≤ xi ≤ 1, i = 1 : 30

ZDT3

min f1(x) = x1

min f2(x) = g(x)× h(x)

g(x) = 1 +
9

n− 1
×

n∑
i=2

xi

h(x) = 1−

√
f1(x)

g(x)
− f1(x)

g(x)
sin
(
10πf1(x)

)
0 ≤ xi ≤ 1, i = 1 : 30



ZDT4

min f1(x) = x1

min f2(x) = g(x)×
(
1−

√
f1(x)

g(x)

)
g(x) = 1 + 10(n− 1)

+

n∑
i=2

(x2
i − 10 cos(4πxi))

0 ≤ x1 ≤ 1− 5 ≤ xi ≤ 5, i = 2 : 10

The following figures show, for each test problem, a graphic representation of
the obtained solutions by the MOGWAT method and the analytical Pareto front.

FIGURE 3. Optimal front
obtained by MOGWAT on
FON problem

FIGURE 4. Optimal front
obtained by MOGWAT on
ZDT1 problem
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FIGURE 5. Optimal front
obtained by MOGWAT on
ZDT1-linear

FIGURE 6. Optimal front
obtained by MOGWAT on
ZDT2

FIGURE 7. Optimal front
obtained by MOGWAT on
ZDT3

FIGURE 8. Optimal front
obtained by MOGWAT on
ZDT4

3.3.3. Table of comparison.
Since the three methods are stochastic, in order to obtain the solution to each

problem, we must run the algorithm thirty times and then calculate the mean
and the standard deviation. The following tables have been created using this
process.
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TABLE 2. Values of parameter γ for the three methods

γ MOGWAT MSSA MOGOA
mean std mean std mean std

FON 0,000420 8,8077e-5 0,00046 2,7308e-5 0,00016 0,00040
ZDT1 0,000130 1,3744e-5 0,01428 0,00221 0,00132 0,00711
ZDT1-linear 0,000270 1,6664e-5 0,01842 0,00164 0,00109 0,00592
ZDT2 0,000370 2,2829e-5 0,01748 0,00405 0,00145 4,5983e-5
ZDT3 0,000120 4,9890e-6 0,00472 0,00079 0,00014 0,00079
ZDT4 0,003915 0,000490 0,03411 0,00439 0,00739 0,01017

TABLE 3. Values of parameter ∆ for the three methods

∆ MOGWAT MSSA MOGOA
mean std mean std mean std

FON 0,59468 0,00914 1,07940 0,03238 0,11442 0,34326
ZDT1 0,25853 0,05011 1,22520 0,04682 0,03678 0,19812
ZDT1-linear 0,10850 0,02108 1,14454 0,04906 0,04043 0,21777
ZDT2 0,24873 0,01179 1,12675 0,05610 0,03448 0,18572
ZDT3 0,36174 0,00559 1,20691 0,08501 0,03469 0,18684
ZDT4 0,27140 0,02020 1,05515 0,05817 0,12229 0,36666

3.3.4. Comments.

⋄ From the table reftab1, it can be observed that the solutions provided by
the MOGWAT method are all close to zero. It indicates that the method
has good convergence. Furthermore, it has the bested value compared
to two other methods. Therefore, we can conclude that MOGWAT is
better than MSSA and MOGOA in terms of convergence.

⋄ An analysis of the results presented in table 3.3.3 proves that MOGAT
has a good distribution of obtained solutions because the values of pa-
rameters γ are all next to zero. MOGWAT is not the best method for all
test problems, but it is not dominated by the two other methods in terms
of distribution.

On the whole, MOGWAT is better than MSSA and MOGOA for these six test
problems that have been dealt with in the paper.
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4. THE ALGORITHM
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5. CONCLUSION

This paper focused on the performance study of the MOGWAT method, which
has been proposed in previous works. First, we proposed the description of
the steps of the method. Then, we have presented the algorithm for the meth-
ods. Finally, we proposed the theoretical and numerical performance of the
method. Concerning the theoretical performance, we have demonstrated the
convergence of the method through three theorems. Regarding the numerical
performance, six test problems have been addressed, and the outcomes have
been compared to those of MSSA and MOGOA method. According to the ob-
tained results, MOGWAT is the best choice for the resolution of multiobjective
optimization problems.

For our next work, we will investigate the complexity of the method in order
to improve the distribution of solutions and then its applications for the resolu-
tion of real-world problems.
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