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SOLVING PARTIAL DIFFERENTIAL EQUATIONS MODELLING SURFACE
FLOWS BY THE REDUCED DIFFERENTIAL TRANSFORM METHOD

Yanick Alain Servais Wellot

ABSTRACT. The aim of this work is to find exact solutions of the non-linear
partial differential equations describing the motion of Newtonian fluids at the
surface. The reduced differential transform method is used to find the exact
solutions of these equations. This method produces an algorithm that favours
rapid convergence of the problem towards the exact solution sought.

1. INTRODUCTION

Several equations or systems of partial differential equations model these en-
vironmental phenomena. In fluid mechanics, the Navier-Stokes equations are
non-linear partial differential equations that describe the motion of Newtonian
fluids. A fluid can be a liquid or a gas. These equations are generally non-linear.

It should be stressed that it is difficult to solve or find the exact solutions of these

equations. However, as approximate solutions, they can often be used to help
understand natural phenomena such as ocean currents, the movement of air
masses in the atmosphere, the behaviour of atmospheric pressure in built-up ar-
eas, the physical situation of bridges under the action of the wind for architects
and engineers, or that of planes, trains or high-speed cars for their design offices,
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as well as the flow of water in a pipe and many other phenomena involving the
flow of various fluids... [4,/13,/17,20]. In mathematics, non-linearity compli-
cates matters. In physics, too, the difficulty arises. For the term non-linearity
translates into the complexity of the physical phenomena being described. This
difficulty of resolution partly affects the analyses or descriptions of the phenom-
ena modeled. In the current context of climate change, a number of serious
problems have arisen. These situations have become recurrent, particularly in
countries where population growth is considerable. These include deforestation,
the presence of many untreated landfill sites, and uncontrolled or inappropriate
house-building and urbanization not adapted to current requirements. These
waste dumps generate gases that pollute the atmosphere because they are not
properly treated. These gas mixtures rise into the atmosphere, causing turbu-
lence and many other situations. The silting-up of rivers, roads and plantations.

Here, we’re concerned with flows and transport. We're interested in Reduced
Differential Transformation method in the Navier-Stokes equations [15,19]. In
fluid mechanics, the Navier-Stokes equations are nonlinear partial differential
equations that describe the motion of Newtonian fluids (i.e. gases and most
liquids) [3]. As stated above, the search for exact solutions to these equations
modeling a fluid as a continuous fluid as a continuous medium with a single
phase is difficult. Our work is motivated by the search for the exact solution of
these nonlinear partial differential equations and the problems problems of han-
dling the nonlinear terms. terms. The general objective is to determine the exact
solutions of partial differential equations when they exist. The specific The spe-
cific objective is to determine the exact solutions of the Navier-Stokes equations
in 2D and 3D using the Reduced Differential Transformation transform (RDTM)
method.

In the following, the method will be presented, followed by a search for the
exact solutions to the various problems selected, and then a conclusion.

2. DESCRIPTION OF THE REDUCED DIFFERENTIAL TRANSFORMATION METHOD

The Reduced Differential Transformation Method (RDTM) was first proposed
by the Turkish mathematician Yildiray Keskin [10,(11]. This method is appli-
cable to a large class if it exists. After Yildiray Keskin and Oturanc [[11], The
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RDTM has also been used by many authors to obtain analytical approximate
and in some cases exact solutions to nonlinear equations. Several types of non-
linear equations have had their different exact solutions easily obtained. We
can quote the nonlinear Voltera partial integro-differential equation, the Tele-
graph equation The inhomogeneous nonlinear wave equation. For more details,
we can refer [[1,[3,5,|7-12]]. Nevertheless, now suppose that function of two
variables u(z,t) which is analytic and k-times continuously differentiable with
respect to space z in the domain of our interest [3,9,16]]. Suppose that we can
consider this function in this form: u(z,t) = f(z)g(t). Based on the properties
of differential transform, function can be represented as:

(2.1) (ZF ) (ZG ) ngk(x)tk,

where the function Uy (z) is called t-dimensional spectrum function the of u(z, t).

If the function u(x,t) is analytic and differentiated continuously with respect
to time ¢ and space x in the domain of interest, then let:

2.2) () = = [ Z e keN

. )= — | =ulx

’ k| otk . ’

where the ¢t—dimensional spectrum function Uy (x) is the transformed function.
The differential inverse transform of Uy (x) is determined as follows:

00 k
(2.3) ZUk (t —to) _Zl [gtk (z, t)] (t—to)" .
t=to

In fact, the function u(x,t) can written in a finite series as follows,
(2.4) Z Ur(z) (t —to)"

n is order of approximate where solution.
Therefore, the exact solution of the problem is given by
(2.5) u(z,t) = lim a,(x,t).
n—oo
The details for the proper understanding of the reduced differential transfor-
mation method are well explained by Keskin who is the author [10,/11]]. Many
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researchers have also contributed to facilitate the understanding and use of this
rich method [1,3,/8,9,(12].

To illustrate the basic concepts of the RDM, consider the following nonlinear
partial differential equation written in an operator form:

(2.6) Lu(z,t) + Ru(z,t) + Nu(z,t) = g(x,t);
with initial condition:
2.7) u(z,0) = f(x).

According to the RDTM, the iteration formula can be constructed as follows
[1,38,/10-412]

Some basic essential properties of the two-dimensional reduced differential trans-
form are presented in Table below [1,3,(8,10-12].

TABLE 1. Error table for the "Cell-Centered" method for volumes

N = 4.8,12, 16.
Functional Form Transformed Form
1 [oF
u(x,t) Uk(x) = ] {%u(x t)] »
w(z,t) = u(z,t) £v(x,t) Wi(z) = Ug(z) £ V()
w(z,t) = au(x,t) Wi(x) = aUg(z) (a is a constant)
w(z,t) = a™t" Wi(z) = 2™6(k —n)
w(z,t) = 2™t"u(z,t) Wi(z) = 2™Uy_ n( )
k
w(z, t) = uz, t)o(z, t) Wi(z) = Vi(@) Ui ZU Wi (
r=0 r=0
O u(x,t k+
w(z,t) = % Wi(z) = (k+1)- (k+7r)Upe(z) = ( 1 ) ——Upyr(7)
w(z.t) ou(z,t) Wi(x) = OU(x)
0 u(x,t) (k + )1 0"Upis(x)
vt = k! ot
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3. NUMERICAL APPLICATIONS

3.1. Problem 1. Consider a two-dimensional incompressible Navier—Stokes equa-
tion [14,/18]

ou ou Pu 0%
1 D — — =
(3.1a) (U +U8y p0(8x2 ay)—i—g,
ov ov v 0%
(3.1b) DtU‘f‘U%"i‘Ua—y (aIQ +8_y2> -9,

for surface flows or in the case of air or a perfect gas, we consider ¢ = 0. The
equations can be written as follows

ou  OJu Pu  u
ov v _ v 0%

with the initial conditions

v(w,y,0) = sin(z + )
In equations ([3.2a) (3.2b), py denotes the kinematic viscosity of the flow. p,
is the ratio Q, where 7 denotes dynamic viscosity of flow, and p the density of
P

flow.
The application of RDTM to equations ([3.2a)) and (3.2b)) gives the algorithm

k k
Vi (x, OV (x,
(k+1) Vi (z,y) + > Ur(x,y)M+§ mLy)M
r=0 r—0

(3.4) ou %
Vv, 0%V,
—Po((%2 + 8y2)’
i OUy—_(x,y) i OUy_(x,y)
(b + 1) U (2,) + 3 Uplw, ) =224 Y Valay)——5 ==
(3.5) =0 =0 Y

B 0?U, N 02U,
AT oy? )’
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The algorithm is manipulated by varying k, thus for £ = 0:

oVy(z, oVy(z,
3.6
(3:6) _(PVolx,y) | PVo(w,y)
oUy(z, OUy(x,
Ur(z,y) + U(x, y)%(—jy) + Vo(, y)%
(3.7)
_ 62U0(ZE, y) + 82U0([E, y)
Po Ox? oy? ‘
Either
5.8 Vi(z,y) — sin(z + y) cos(x + y) + sin(z + y) cos(x + y)
' = po (—sin(z +y) — sin(z + y)),
3.9 Ui(x,y) + sin(z + y) cos(x + y) — sin(z + y) cos(x + y)
| — po (sin(z + y) + sin(z + 1))
(3.10) Vi = —2pgsin(z +y)
(3.11) Uy = 2pp sin(z + y)
For k = 1:
oV, oV, oV oV,
2Wa(z,y) + Upm— + Ut + Voot + Vi
(3.12) ox ox ox ox
' [ PVa(z,y) | OVa(z,y)
- pO 8x2 + ayQ )
oU ol oU ol
2Us(2,y) + Uyt + Ui + Voot + Vi
(3.13) ox ox ox ox
' ([ OPUi(z,y) | O*Ui(x,y)
P Ox? + oy? ‘
Either

(3.14a) Va(z,y) = 2p3sin(z + y),
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(3.14b) Us(,y) = —2p5 sin(z + ).
By the same principle of iterations, the following expressions can be deduced
4 4
(3.15) Va(z,9) = —zppsin(z +y),  Us(e,y) = +3ppsin(z +y),
2, . 2,
(3.16) Vi(z,y) = 370 sin(x + y), Uy(z,y) = —3% sin(z + y).

Exploiting expressions (2.1)) and (2.5) gives the solution in the form of a
series. Let:

v(z,y,t) = Y Vilz,y)t* = Vo(z,y) + Vi(z,y)t + Va(z, y)t°
k=0

(3.17)
+ ‘/3(1‘7 y)tg + Vzl(x7y)t4 + ;
U(ZE, Y, t) = Z Uk(l‘, y)tk = U()(,T, y) + U1($, y)t + UQ(xa y)t2
(3.18) k=0
+ Us(z,y)t* + Us(z, y)t* + - -,
v(x,y,t) = sin(x +y) — 2ppsin(z + y)t + 2p3 sin(z + y)t?
(3.19) 4 4 3,24 4
— gPosin(z +y)t” + ppsinz + )"+,
u(z,y,t) = —sin(z + y) + 2po sin(x + y)t — Qp?) sin(z + y)t2
(3.20)

4 2
+ gpg sin(z + y)t* — gpé sin(z +y)tt + - - -,

4 2
(3.21) v(z,y,t) = sin(x + y) {1 — 2pot + 2pat? — gpgt?’ + §p§t4 +-- } :

4 2
(3.22)  wu(x,y,t) = —sin(z +y) [1 — 2pot + 2p3t? — gpgt?’ + §p§t4 + - } )
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1
v(z,y,t) =sin(z + y) {1 + (—2pot) + o1 (—2pot)”
(3.23) ] ] ‘
o (—2p0t)” + 1 (—2pot)" + - ] ;
: 1 2
u(z,y,t) = —sin(z + y) ll + (—2pot) + 2 (—2pot)
(3.24) . . '
+3 (—2p0t)° + o (—2p0t)* + -~ } :
The exact solution is:
(3.25a) v(z,y,t) = (sin(xz +y)) exp (—2pot)
(3.25b) u(z,y,t) = — (sin(z + y)) exp (—2pot)

3.2. Problem 2.
The following nonlinear PDE systems are derived from fluid flow problems,
turbulence, perturbation and many other phenomena [6]. The general case is

as follows
v, 1) = gy (2, 1) + au(a, t)ug (z,t) — B (uv),
(3.26) (7, 1) = vaa (2, 1) + v (, vy (2, ) — B (wv),
('T? = f( )

0)
(7):<>

This case takes into account the following values

a =2, g =v=1, f(z) = g(x) = sin(z).

Substituting the above values gives the following (3.28) problem:

ur(z,t) = Ve (2, t) + 20(x, t)vg(x,t) — (uv)

x

(3.27) {Ut(x,t) = Uya (2, 1) + 2u(x, t)uy(x, t) — (uv),

with the initial conditions
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(3.28) {u(:v, 0) = sin(z)

v(z,0) = sin(x)

By analogy, the application of the RDTM to equations (3.28)]) gives the algorithm

.
(9 U aU s aU T
(k+ 1)Uy =—o 2ZU - Zv -
OV .
- Zr 0 U ak
(3.29)
B 3 ‘/k; avk: r aUk’ r
aVk r
\ Zr 0 U a
The algorithm is manipulated by varying k, thus for £ = 0:
2
U, - 0 U20+2U08U VOaU _anvo
o
0 0 0 0
— 2 _ _
Y 0x? 2V ox Yo ox bo Ox
Either

{Ul(x) = —sin(z) + 2sin(z) cos(z) — sin(x) cos(x) — sin(z) cos(x)
(3.31)
Vi(z) = —sin(z) + 2sin(x) cos(z) — sin(z) cos(x) — sin(z) cos(z)

So, after all calculations,

(3.32) {Ul ()=~ S.m(‘%)

For k = 1:
(20, —a;;]l 2an%; 2U1%—%aa(j
Vi =T 1—m
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Either
1. L.
(3.34) Us(x,y) = 5 sin(x), Volz,y) = 5 sin(x).
For k = 2:
( 62U2 oU, oU, U, oU, U,
2 . - = I
Vs =G T2 (g, 05, +U2@x) Yoor "V,
_‘/,2%_%61/ U(]@V _Ulf)Vl
(8.35) 82?/96 a(9V a(9\/' agV U, ouU-
2 2 0 1
= — 2 —
3Vs 2 (‘;Oa +Vlax+vgax) Yo Vg
Uo Vo oV Vi
L TNy B Y Y
Either after all calculations
1 1
(3.36) Us(z) = & sin(x), Vs(z) = ~& sin(x).
By the same principle of iterations, the following expressions can be deduced
1 1
(3.37) Us(z) = 2 sin(x), Vi(z) = 2 sin(x),
(3.38) Usfw) = o sin@),  Vo(a)— = <o sin(a)
. 5(z) = 12osmx 5(x —12051nm.

Little by little, the following expressions result.
Exploiting expressions (2.I) and (2.5) gives the solution in the form of a
series. Let:

(3.39) u(a,t) =Y Up(x)t*,  sin(z)o(z,t) = Vi(x)t"

Writing as an extension of the expressions (3.39) gives:

1 1 1
u(z,t) = sin(x) — sin(z)t + 5 sin(z)t? — 8 sin(z)t® + oY sin(z)t*

1
- msin(w)t5 +-

Either . . , .
t) = si —t =t Pttt
u(, ) = sin(z) ( TRttt Tt )

1, 1 1 1
t) = si —t 4t Pt — P
v(e1) Sm(x)( T Tt Tt T
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The exact solutions are given by
(3.40) u(x,t) = e "sin(z), v(z,t) = e 'sin(x).

3.3. Problem 3.
Consider the following system of PDEs [2]]

(.4, 8) = g+t + 20 (s + ) — (w0), — (w0),
(3.41) (@, Y, 1) = Vaw + Uy + 20 (vp + vy) — (W), — (wv),
u(z,y,0) = v(z,y,0) = cos(z + y)
Applying the RDTM to the problem (3.41) gives the following algorithm:

( 82Uk(:v,y) 02Uk($ay)
(k+1) Upsa(z,y) = 92 dy?

k k
8Uk,r(x, y) akar@ja y)
- (Z U T2 U dy

r=0 r=0
k k k k
aUk—r avk—r aUk—r av}c—r
I D SLLCL b el DL e Sl e

(3.42) =0
82Vk (3:7 y) 62Vk (‘Ta y)
(k + 1) Vk"ﬁ‘l(w? y) = 81’2 + ayQ
k k
akar (I, y) akar ('ru y)
2 ZVkor\ s d) ZVkzr\ s d)
+ (ZOU o +;U, 5
k k k k
6Ukz—r aVk—r aUk—r aVk—’r
| ;VT or Z:UT ox ;VT dy ;OUT dy
For k = 0:
([ Uiy
0*Uy(z, 02Uy (x, oUy(z, OUy(z,
_ 5572 v, 8052 Y o (1w, ch Y o, o(éy y))
_VO% _ Uo(x,y)% _ Vb% _ anvk_’"
(3.43) Ox ox dy oy
Vi(z,y)
*Vy(z, *Vy(x, oVy(z, oV (z,
_ g; Y) + 2)22 Y) 49 (Uo 00($ y) + U, Oa(y y))
oU, A% oUy A%
\ —Vo Ox _Uoﬁx _Voﬁy _any
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After all calculations have been made, the following results are obtained
(3.44) Uy = —2cos(x + y), Vi = —2cos(z + y).

Applying the algorithm (3.42), £ = 2, k = 3, k = 4, and step by step, the
following results are obtained:

(3.45) Uy = 2cos(z + ), Vy = 2cos(x +y),
4 4

(3.46) Us = -3 cos(z + ), Vs = -3 cos(z + ),
2 2

(3.47) Uy = 3 cos(z +y), Vy = 3 cos(x + y),

Exploiting expressions (2.1)) and (2.5) gives the solution in the form of a series.
Let:
(

u(x,y,t) = cos(x +y) — 2cos(x + y)t + 2 cos(x + y)t?

4 2
——cos(z +y)t* + = cos(x + y)tt 4+ - - -,
(3.48) 3 3
v(z,y,t) = cos(x +y) —2cos(x + y)t + 2 cos(x + y)t*

4 2
—3 cos(z + y)t* + 3 cos(x +y)tt +--- .
(

Transformation of the expressions gives

v(x,y,t) = cos(z +y) [1 +(=2t) + (_2t') _ (—37? n (—47? N }

The exact solution to the problem (3.41) is:

(3.50) wu(x,y,t) = exp (—2t)cos(z + y), v(z,y,t) = exp (—2t) cos(z + y).

4. CONCLUSION

Generally speaking, the search for exact solutions to the equations modeling
flows, specifically the solutions to the Navier-Stokes equations, has not always
been easy. Great difficulties have often existed. However, RDTM was applied



SOLVING PDES MODELLING SURFACE FLOWS BY RDTM 87

with ease. Good results were obtained. The expected results are the exact

solutions of the proposed problems. Exact solutions were obtained. Of course,

the calculations are tedious and the method requires a thorough grasp of the

basic concepts. The results obtained confirm the effectiveness of the method. It

should be noted that It should be emphasized that finding the solution requires

a good command of Taylor series manipulation. .
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