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ON A COSINE-WEIGHTED VARIATION OF THE WIRTINGER INTEGRAL
INEQUALITY

Christophe Chesneau

ABSTRACT. This note presents a one-parameter cosine-weighted variation of
the Wirtinger integral inequality, providing a detailed proof. Additionally, two
further integral inequalities are derived using a series approach.

1. INTRODUCTION

The Wirtinger integral inequality is a fundamental result in mathematical
analysis. It provides a precise relationship between a function and its deriva-
tive when certain boundary conditions are met. Its simplest form is presented
below. Let f : [0, 7] — R be a function such that f € C''([0, n1]), where

C'([0,7]) = {f :[0,7] = R | f and f’ are continuous on [0, 7]}

and that the following boundary conditions hold: f(0) = f(7) = 0. Then we

have

[v@rar < [ir@par

This inequality plays a key role in the theory of Sobolev spaces, variational meth-
ods, and eigenvalue problems. It has also inspired numerous extensions and
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generalizations in modern mathematical analysis. See, e.g., [[1-10]], and the
references therein.

In this note, we present a new variation of the Wirtinger integral inequality.
It features a one-parameter cosine-weighted term under suitable trigonomet-
ric boundary conditions. The inequality is established via an elementary proof
that relies on standard differentiation, expansion formulas and integration by
parts. Building on this approach, we also derive two alternative variations of
the Wirtinger integral inequality using a series-based method.

The main result is presented in Section |2} followed by two secondary results
in Section |3l The note concludes with a brief discussion in Section

2. MAIN RESULT

The theorem below describes our main result.

Theorem 2.1. Let m € Nand f : [0, 7] — R be a function such that f € C'([0, n])

and ) )
V@R )

z=0 sin(z)  z—r sin(x)

=0.

Then we have

waLfCrHQKOSCtH%”dx <

—2m+1

[hmwmmm%m.

Proof. For the purposes of this proof, let us introduce the intermediary function

g(x) = fz)

sin(z)’
so that f(z) = g(z)sin(x). Using standard differentiation and expansion rules,

we get
| r@Pleostarmas = [ llgta)sin(o))1 o)™ o
_ /0 ) sin(z) + g(x) cos(x)]*[cos ()] dx
- [ w11@www%m4%umwmmmmmmww
(2.1) / *lcos(x)]*™ 2 dx.
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Let us now focus on the second integral term, i.e., 2 [ ¢'(x)g(x) sin(z)[cos(z)]*" dx.
Using an integration by parts based on 2¢/(z)g(z) = [[¢(x)]?]’, the definition of
g, and the boundary conditions, we have

T—T

2 /O7r g (z)g(z) sin(x)[cos(z)]*"dx = [[g(a:)]2 sin(:z:)[cos(x)]2m+1}x_>o
/0 )17 [[cos(z)]*™ % — (2m + 1)[sin(x)]*[cos(z)]*"] dx
)

CUE@P @)

oo sin(z) @0 sin(z)

- / " [g(@)Pleos(x) P2 + (2m + 1) / " (@) sin(@) P [cos(x)Pdz

@2 == [ o) leos(a)™2da + (2m +1) [ lg(o)sin(o)leos(a)

Combining Equations (2.I)) and (| - simplifying [ [g(2)]*[cos(x)]*"+?dx and
its negative, using the fact that [[¢'(x)]*[sin(z)]*[cos(x )]2md:v > 0 and express-
ing g, we obtain

| r@Pleostaynas
~ [ @ Plsina)Pleos()"da -+ (m+ 1) [ lo(o)Plsina) leos(o)*"ds
> (m+ 1) [ [o(o)Plsna)leos(o)"ds
= Cm+ 1) [ ()P loosta)

This implies that

/0 @) Pleos(@)Pmd <

“—2m+1

/ [f (x))*[cos()]*" da.
0
The proof is completed. 0

Theorem applies to a wide class of functions. In particular, simple exam-
ples satisfying the boundary conditions

L V@P L f@P

20 sin(x)  zow sin(z)

include
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- f(z) = 2%(7m — x)P with o, B > 1/2,

- f(x) = [sin(x)]*[sin(r — x)]® with o, 8 > 1/2,
- f(x) = 2[sin(m — 2)]° with o, 8 > 1/2,

- f(z) = [sin(2)]*(7 — 2)° with o, 8 > 1/2,

- f(m) = 1'(77 — z)e‘l/[x(w_$)].
Some specific inequalities that follow from Theorem are presented below.

- Setting m = 0, Theorem reduces to the classical Wirtinger integral
inequality, but under the indicated trigonometric boundary conditions.
- Setting m = 1, we get

| r@Peostapae < 5 [ 1@ leosta) P

- Setting m = 2, we obtain

| r@Pkos s < ¢ [ (7@ leosta)

Additional examples can be formulated in the same way, all apparently new
within the existing literature.

The proposition below demonstrates that the boundary conditions of the clas-
sical Wirtinger integral inequality imply those considered in Theorem

Proposition 2.1. Let f : [0,7] — R be a function such that f € C'([0,7]) and
f(0) = f(w) = 0. Then we have

i H@F U@

20 sin(z)  a-w sin(x)

Proof. Since f € C'([0,7]) and f(0) = 0, for any x € (0, 7), we can write

o rou- [ o

Applying the Cauchy-Schwarz integral inequality, we get

/Ox f/(t)dt‘ < \//0 dt\//ox[f’(t)]Zdt: Vi /Ox[f’(t)]th.

Therefore, for any = € (0, 7), we have

[f (@)]” e
0= sin(x) = sin(:z:)/o St

)| =
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Since lim,_,o sin(x)/z = 1 and lim, o [, [f'(¢)]*dt = 0, we have

o<y L5 < Iy [ =1x0=0
so that
@R
2—0 sin(z)

The first limit result has been obtained. Let us now examine the other one using
a similar method. Since f € C'([0,7]) and f(7) = 0, for any x € (0, 7), we can

—[f'(t)dt: —/:f’(t)dt

Applying the Cauchy-Schwarz integral inequality, we get

t)dt ¢/<ﬁ¢/ [f/()]2dt = ¢Ff@/ f’Qﬁ

Therefore, for any x € (0, 7), we have

sin(x) ~ sin(z)

write

Since lim,_,. sin(z)/(7m — ) = 1 and lim,_, [[f'(¢)]*dt = 0, we have

[f (@))? ﬂ—w/” 2
< < = =
0 9101_I>I71T Sn(z) il_I)ITlrSln< 7/ [f'(D)]°dt =1x0=0,
so that )
tim L _ g,
z— sin(z)
This completes the proof. O

Consequently, Theorem [2.1] holds under the boundary conditions of the clas-
sical Wirtinger integral inequality. A rigorous formulation of this result is pre-
sented below.

Theorem 2.2. Let m € Nand f : [0, 7] — R be a function such that f € C'([0,7])
and f(0) = f(m) = 0. Then we have

/0 @) Pleos(@) P <

“2m+1

/0 [ (@) lcos(@)]Pda
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The rest of the note presents two secondary results derived from Theorem

2.1

3. SECONDARY RESULTS

A consequence of Theorem is the theorem below, which is based on a
direct series approach.

Theorem 3.1. Let f : [0, 7] — R be a function such that f € C*(|0,7]) and
C[@P [P

=0 sin(z)  z—w sin(x)

Then we have

[ e < g [T o (1 an

provided that the integrals exist.

Proof. 1t follows from Theorem [2.1] that, for any m € N,

/0 [ @)Pleos(@)*dr < /0 (@) Pleos @)

“2m+1
Summing both sides with respect to m € N, we get

; {/Oﬂ[f(:c)}z[COS(x)]zmdx] < ; LmlJr 1 /Oﬂ[f’(:v)]Q[cos(x)Fmdx |

By the Lebesgue dominated convergence theorem, we can interchange the sum
and the integral, yielding

o0 [e. 9]

/0 @RS feos(e)Prdi < / RS L feos(@)Pmdr

2m +1

m=0 m=0
Using the classical geometric series for the left term taking into account that
[cos(x)]* € (0,1) for any x € (0,7) almost surely, and the difference of logarith-
mic series for the right term, i.e., for any y € (—1, 1),

e y2m+1 1 1_'_y
= _log PR )
2 1—y
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so that, for y #£ 0,

oy 1+y
>l (1Y),
m:UQm—l—l 2y 11—y

(also with reference to the hyperbolic arctangent function), taking into account
that cos(z) € (—1,1) for any = € (0, 7) almost surely, we get

/0 ﬂ[f(x)]dex < /0 Py e sz—‘;zg) i

so that

[ e <5 [P o (1 Y a

This completes the proof. O

For the special case f(z) = sin(x), one can prove that both sides of the in-
equalities are equal to 7.

Another consequence of Theorem is the theorem below, which is still
based on a direct series approach.

Theorem 3.2. Let f : [0, 7] — R be a function such that f € C*(|0,7]) and
L U@P @R

20 sin(x)  zow sin(z)

Then we have

" 21 + [cos(z)]? " " !()]2 1 -
| rwr e < [P e

provided that the integrals exist.

Proof. It follows from Theorem [2.1] that, for any m € N,

| r@Plostopras < ot [ @ Peos(ods

so that
(2m+1) /0 [f (2)]?[cos(x)]*™ da < /0 [f' ()] [cos(x)]*™ d.

Summing both sides with respect to m € N, we get

[e.e]

> [em v [(Hpeosrras] < 3 [ [wteosoas)

m=0 0 m=0
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By the Lebesgue dominated convergence theorem, we can interchange the sum
and the integral, yielding

[

Using the geometric-type series, for any y € (—1, 1),

e} o0

(2m + 1)[cos(x)]*dx < /O7r [f(x)]? Z[cos(x)]2md:c.

m=0 m=0

2m+ 1)y*" = ——
mzo (1—y?)?

for the left term and the classical geometric series for the right term, taking into
account that [cos(x)]? € (0,1) for any z € (0, ) almost surely, we get

T 1 [oos(@)]? O S
A“@H o< [ 1@ s

1 — [cos(z)]?)? cos(z)]?
so that
" 21+ [cos()]? " i N E 1 v
J, et < [ U e
This completes the proof. O

As far as the author is aware, the variations of the Wirtinger integral inequality
in Theorems [3.1] and [3.2] are original.

4. CONCLUSION

In this note, we introduced a one-parameter cosine-weighted variation of
the Wirtinger integral inequality, with a proof based on standard integral tech-
niques. The result accommodates a broad class of functions. Two additional
variations are derived via a series-based approach. Future research may focus
on multidimensional extensions, the determination of sharper constants, and
applications to weighted inequalities in differential equations and functional
analysis.
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